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We generalize Landauer’s theory of ballistic transport in a one-dimensional (1D) conductor to situations
where charge carrier injection and extraction are not any more confined to electrodes at either end of the
channel, but may occur along its whole length. This type of distributed injection is expected to occur from
the two-dimensional (2D) bulk of, e.g., a quantum spin (or anomalous) Hall insulator to its topologically
protected edge states. We apply our conceptual solution to the case of two metal electrodes contacting the
2D bulk, enabling us to derive criteria that discriminate ballistic from resistive edge channels in
multiterminal transport experiments.
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Charge transport through a 1D channel without scatter-
ing was famously explained by Rolf Landauer decades ago
[1–3]. He considered a ballistic conductor between two
metal electrodes, with charge carrier injection at one end
and extraction at the other [Fig. 1(a)]. Importantly, in
Landauer’s seminal work neither injection nor extraction is
allowed along the length of the channel. This situation is
realized, e.g., in 2D electron gases in GaAs-AlGaAs
heterostructures [4,5] and carbon nanotubes [6], for which
Landauer’s theory has provided accurate predictions.
With the recently rising interest in topologically pro-

tected edge channels in quantum spin or anomalous Hall
systems (semiconductor quantum wells [7–13], 2D materi-
als [14–24], and graphene nanoribbons [25,26]), a funda-
mentally different experimental situation has moved into
focus: the ballistic channel exists alongside a 2D half-plane
with which it forms an interface along the complete channel
length; beyond this extended interface contact, there are no
further specific injection contacts. If, as is the case in most
experimental realizations of the systems mentioned above,
the half-plane has a nonvanishing residual conductivity, any

voltage applied within the half-plane will cause a current
injection into the ballistic channel that is distributed along
the length of the channel. Clearly, this set of circumstances
is not covered by Landauer’s original considerations [1–3].
Here, we generalize Landauer’s theory of ballistic trans-

port to the situation of distributed injection into a 1D
channel. To this end, we specify an injection (and extrac-
tion) current density distribution in the 2D half-plane and
solve the transport problem from the fundamental principle
of conductance quantization in the 1D channel with perfect
transmission (conductance G0=2 ¼ e2=h ≈ ð25.8 kΩÞ−1
per spin, e.g., Ref. [27]). We consider the transport in
the contacts (here: the 2D half-plane) as diffusive and thus
employ a semiclassical approach based on Poisson’s
equation [28], rather than a fully self-consistent quantum
mechanical treatment [29,30].
Beyond formulating a conceptual, geometry-independent

framework for distributed injection, we solve a specific class
of injection geometries—symmetrically placed pointlike
injection contacts in the half-plane. This geometry is directly
applicable to nanoprobes and multitip scanning tunneling
microscopy (STM), powerful experimental methods to study
2D transport at the nanoscale [31]. Using the explicit
solution provided here, multiterminal potentiometry [32]
can overcome the challenge to discriminate topological
(ballistic) from trivial (diffusive) edge channels, which is
impossible in single-tip STM, because in both cases the
vertical tunneling conductivity can be enhanced by the high
local density of states near the edge [16,17,24,33–36].
Contact geometry—For current injection into the con-

ducting 2D half-plane with sheet conductivity σ, we
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consider small circular source (S, potentialΦS ¼ μS=e) and
drain (D, potential ΦD ¼ μD=e) contacts [Fig. 1(b)]. This
situation can be realized, for instance, with small litho-
graphic contacts or by contacting two tips of a multitip
STM to a sample surface [28,31,37,38]. Source and drain
are positioned at a distance L from each other and a
common distance W from the ballistic channel. For the
configuration in Fig. 1(b), the whole region x < 0, y ¼ 0
can be considered as the region of distributed injection from
the source contact into the 1D ballistic channel and,
correspondingly, the region x > 0, y ¼ 0 as the region
of distributed extraction towards the drain contact.
Distributed injection—In the situation displayed in

Fig. 1(b), a current distribution develops over the half-
plane with different types of current paths from source to
drain: (i) fully Ohmic paths that do not enter the ballistic
channel and (ii) paths that go via the ballistic channel,
thereby including both resistive and ballistic sections. The
current paths can be obtained from a continuously varying
potential Φðx; yÞ whose profile is governed by the Poisson
equation [∇2Φðx; yÞ ¼ −∇ · j=σ] with appropriate boun-
dary conditions for the contacts and the interface with the
ballistic channel at y ¼ 0. We consider, without loss of
generality, antisymmetric boundary conditions at the con-
tacts, giving rise to an antisymmetric potential along x,
Φðx; yÞ ¼ −Φð−x; yÞ. The boundary condition for the
potential at the interface to the ballistic channel depends
on the latter’s properties (more specifically, the filling of its
states) which will be discussed below. It results in an
interface potential profile Φðx; y ¼ 0þÞ≡ ϕðxÞ, the
generic shape of which, including a single maximum ϕ�
and ϕðxÞ ¼ −ϕð−xÞ [see solid orange and blue lines in
Figs. 1(c) and 1(d)], follows from symmetry considerations
(Supplemental Material Note 1 [39]).

Utilizing the generic ϕðxÞ in Fig. 1(d), we discuss
charge carrier injection into and extraction out of the ballis-
tic channel with the help of Figs. 1(e) and 1(f). In Landauer’s
treatment, a source reservoir injects right movers from an
energy window ½μD; μS� into the ballistic channel [Fig. 1(e)],
corresponding to a bias voltage V¼ΦS−ΦD¼ðμS−μDÞ=e
(here considering positive charge carriers and V > 0 for
convenience, without loss of generality). For the ballistic
channel to exhibit a perfectly quantized conductance, all
available right moving states in the channel must be
occupied through the injection in this energy window and
propagate with perfect transmission between source and
drain, without being compensated by states moving in the
opposite direction (reflectionless drain contact) [27]. In
contrast, in the distributed contact geometry the energy
window for injection becomes a function of x, as shown by
the orange shaded region in Fig. 1(d). On each Ohmic
current path section between source contact and ballistic
channel, carriers lower their energy by μS − eϕðxÞ [light
orange paths with arrows in Fig. 1(f) for two different
values of x]. This yields eϕðxÞ as a local upper limit for the
energy of carriers injected at x into the ballistic channel
on the source side (x < 0), shown as a solid orange line in
Fig. 1(d). A similar argument applies to the carriers extrac-
ted on the drain side (x > 0) that lower their energy by
eϕðxÞ − μD [light blue paths in Fig. 1(f)] between the
ballistic channel and the drain contact. As they can only
enter the drain contact with energy μD or higher, the lower
energy limit to exit the ballistic channel at x > 0 is eϕðxÞ
[solid blue line in Fig. 1(d)]. Dictated by symmetry,
corresponding injection and extraction paths, arriving at
the ballistic channel at x < 0 and departing from it at
−x > 0, respectively, feature the same energy loss in the

(a) (c) (d)

(b)

(e) (f)

FIG. 1. 1D ballistic edge channel with distributed injection. (a) In the standard Landauer setup, charge carriers are injected and
extracted locally at the ends of a 1D ballistic channel. The contact resistance at each contact (indicated by the teal interfaces) is
Rc ¼ 1=G0 per spin. (b) In the contact geometry considered here, current enters and exits a 1D ballistic edge channel in a distributed
manner via a conducting half-plane with sheet conductivity σ and symmetrically positioned source (S) and drain (D) contacts (e.g., STM
tips). (c) PotentialΦðx; yÞ in the 2D half-plane, obtained by solving the Poisson equation with boundary conditionΦðx; y ¼ 0þÞ ¼ ϕðxÞ
at the interface with the 1D ballistic channel. The interface potential ϕðxÞ, indicated as solid orange (blue) lines on the source (drain)
side, is obtained by numerically solving the filling condition. (d) The antisymmetric ϕðxÞ (see text for details). (e) Energy diagram of
charge carrier transport in the standard Landauer setup shown in (a). (f) Energy diagram for the contact geometry shown in (b).
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2D plane. As a consequence, the energy distribution of
injected charge carriers at x < 0 must be identical to that of
the extracted carriers at −x > 0. This implies that the upper
(lower) limit for injection (extraction) at x < 0 (x > 0)
is also the upper (lower) limit of extraction (injection) at
−x > 0 (−x < 0), shown as dashed blue (orange) line in
Fig. 1(d) (Supplemental Material Note 2 A [39]). Hence, at
all x, injection and extraction windows at the ballistic
channel are spread symmetrically around zero energy with
width 2ejϕðxÞj and symmetric around x ¼ 0 [see orange and
blue shaded regions in Fig. 1(d)].
When charge carriers enter the ballistic channel, they

leave holes behind in the Ohmic 2D plane [indicated by
white circles at positions −x� and −x0 in Fig. 1(f)]. These
holes are highly energetic compared to the surrounding
Fermi sea and quickly filled by dissipative relaxation
processes in the 2D Ohmic plane within a short distance
λmfp, as indicated by orange areas close to the interface in
Fig. 1(f). We consider λmfp ≪ jΦSj=j∇Φj; L;W such that
conventional Ohmic transport with sheet conductivity σ is
effectively maintained in the half-plane and λmfp does not
enter our solutions explicitly (Supplemental Material Note
2 C [39]). Analogous processes occur when charge carriers
exit the ballistic channel. Together, these relaxation proc-
esses add to the overall dissipation for a path from the
source to the drain electrode via the ballistic channel, such
that the total dissipation is equal to μS − μD for all current
paths [2ejϕðx0Þj occurring within λmfp of the interface to the
channel, and μS − μD − 2ejϕðx0Þj spread over the entire
path through the 2D half-plane, for a current path with entry
point −x0 and exit point x0].
Filling condition—To retain a perfectly quantized bal-

listic channel in our setup, all right moving states in the
energy interval ½−eϕ�;þeϕ�� around the equilibrium
chemical potential must be completely occupied and
propagate with perfect transmission between the regions
of distributed injection and extraction, while obeying the
local limits regarding the injection or extraction energies as
discussed in the previous section. Implementing these
requirements by equating the local current density entering
the ballistic channel from the 2D half-plane to the complete
filling of its states over all energies that are locally
accessible, we obtain the filling condition

σ∂yΦðx; yÞjy¼0þ ¼ G0

2

Z
ϕðxÞ

−ϕðxÞ
dϕ

1

ΔxðϕÞ : ð1Þ

The right-hand side is a Riemann-Stieltjes integral from
−ϕðxÞ to the local potential ϕðxÞ [vertical purple stripes in
Figs. 1(d) and 1(f)]. Note that the equation is nonlocal, as the
injection to completely fill the density of states of the
ballistic channel at each energy eϕ is distributed over the
length ΔxðϕÞ [horizontal red stripe in Fig. 1(d)]. The
interface potential ϕðxÞ together with the boundary con-
ditions for the contacts uniquely determine the potential

landscapeΦðx; yÞ over the complete half-plane via analytical
continuation and thereby also fix the injected current density
on the left-hand side of Eq. (1). Examples for the numeri-
cally calculatedΦðx; yÞ andϕðxÞ are shown in Figs. 1(c) and
2(a), respectively. The derivation of Eq. (1) and the numeri-
cal method for solving it [42] are provided in Supplemental
Material Notes 2 A and B [39]. We stress that the filling
condition follows from general considerations (current con-
tinuity, energy conservation, symmetry) within semiclassical
transport theory applied to the (ideally insulating) half-plane
in the presence of residual charge carriers and ballistic
transport without scattering in the edge channel [44], thereby
avoiding a self-consistent Schrödinger-Poisson treatment of
electron density and potential in the mixed 1D-2D system
[29,30]. We further emphasize that ϕðxÞ from Eq. (1) is
expected to peak in the range 1.5 to 15 mV for typical
parameters (Supplemental Material Note 4), well within the
resolution of, e.g., STM-based potentiometry and therefore
directly accessible in experiment.
Comparison to quasi-1D resistive channels—To evaluate

the distinct transport behavior of a ballistic channel, we
compare the interface potential ϕðxÞ as obtained from the
filling condition [Eq. (1)] with the interface potential of a
quasi-1D Ohmic channel [45]. The latter is modeled as a
narrow stripe of width d ≪ W, L, with y∈ ½−d; 0� and
infinite extension along x, having a sheet conductivity σΩ
(1D conductivity σΩd); its potential can be obtained
analytically (Supplemental Material Note 3 [39]) and has
the same generic shape as that of a ballistic channel
[Fig. 2(a)]. Natural limiting cases are the perfectly con-
ducting Ohmic channel (σΩ → ∞), with vanishing inter-
face potential (ϕ ¼ 0) and maximal current, and the fully
insulating Ohmic channel (σΩ → 0) carrying zero current.
ϕσΩ→0 provides a convenient upper limit, since any finite
current injection naturally lowers the interface potential
towards zero (the opposite limiting case). Hence, we
normalize all interface potentials with ϕ�

σΩ→0, the maximum
of ϕσΩ→0ðxÞ.
To explore whether the interface potential of a ballistic

channel (ϕball) can be emulated by an Ohmic channel, we
choose the latter’s sheet conductivity σΩ1

to match the
quantized conductance G0=2 over the length L, i.e.,
σΩ1

≡ ðG0=2ÞL=d. While the interface potentials ϕball

and ϕΩ1
[Fig. 2(a)] appear qualitatively similar, there are

notable differences: ϕΩ1
exhibits a slower decay at large

jxj > L, but a gentler slope towards x ¼ 0, with a crossover
of the interface potentials around jxj ∼ L=2. These
differences arise because the voltage drop of an Ohmic
channel scales with the path length, while being path length
independent over a ballistic channel. Adjusting the sheet
conductivity of the Ohmic channel, some features of ϕball
can be recovered more accurately. However, systematic
agreement with ϕball along the whole interface cannot be
obtained for any quasi-1D Ohmic channel.
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A better overall agreement with ϕball, in particular for
jxj > L, can be obtained by considering an Ohmic lower
half-plane with sheet conductivity σlhp ≡G0=2 in place of
the ballistic channel (green profiles in Figs. 2 and 3). This
boundary value problem can also be solved analytically [28]
(Supplemental Material Note 3 [39]). Because of its 2D
geometry, a distribution of current paths develops in the
lower half-plane that mitigates the linear scaling of the
resistance, the general property of all quasi-1D Ohmic
channels that is in direct contrast with a ballistic channel.
Thus, although the conducting lower half-plane does not
represent a 1D channel geometrically and moreover is
Ohmic, it turns out to be a reasonable proxy for a 1D
ballistic channel in our contact geometry. With respect to
experiments, this raises the question how the transport
signature of a truly existing lower half-plane (e.g., the
substrate terrace next to the edge of a quantum spin Hall
insulator) can be distinguished from a ballistic edge channel.
Here we note that, to be a good proxy, the lower half-plane
has to have a sheet conductivity close to G0=2, while any
physical lower half-plane will have σlhp ≪ G0=2, making it
irrelevant for the transport problem. If in doubt, σlhp can be
measured independently to confirm that a transport signa-
ture similar to the one displayed by the orange symbols in
Figs. 2 and 3 must be due to a ballistic edge channel.

Hallmark behavior of a ballistic channel—To pinpoint
criteria which allow experimental identification of 1D
ballistic transport, we explore some characteristic features
of the interface potential ϕ, keeping the total source-to-
drain current fixed. Figures 2(b), 3(a), and 3(b) show how
the maximum ϕ� of the interface potential, its position x�,
and the full width at half maximum (FWHM) of the
potential profile (the latter providing a measure of the
decay at large distances) depend on the half-plane’s sheet
conductivity σ. The same conductivities of Ohmic channels
as in Fig. 2(a) are employed. The scaling of ϕ� with σ is
similar for all scenarios [Fig. 2(b)]. When analogously
varying the source-to-drain distance L [Fig. 2(c)] and
common distance to the ballistic channel W [Fig. 2(d)],
we find a qualitatively different scaling behavior of ϕ� with
L, increasing (decreasing) with L for the Ohmic (ballistic)
channel. This reflects the qualitatively different resistive
behavior of Ohmic and ballistic channels when changing
the path lengths of conduction (see Supplemental Material
Note 2 B for a more detailed discussion [39]). Moreover,
all Ohmic channels display a much broader maximum
[Fig. 3(b)] that is significantly displaced from the contact
positions (x ¼ �L=2) to larger x [Fig. 3(a)]. While the
displacement quickly decays when moving away from the
interface [Fig. 3(c)], the larger FWHM of Ohmic channels
persists to rather large y [Fig. 3(d)], making the narrow
FWHM a relevant and experimentally measurable signature
that clearly differentiates ballistic from Ohmic channels.
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FIG. 2. Normalized interface potential ϕball of a 1D ballistic
edge channel (solid orange line and orange circles), in compari-
son with several resistive proxies: quasi-1D Ohmic channels Ω1

with σΩ1
¼ ðG0=2ÞL=d ¼ 3874 μS□−1 (dashed blue), Ω2 with

σΩ2
¼ 0.7σΩ1

(dash-dotted yellow), Ω3 with σΩ3
¼ 0.5σΩ1

(dot-
ted purple), and Ohmic lower half-plane with σlhp ¼ G0=2 (solid
green), (a) as a function of x with L ¼ 1 μm, W ¼ 0.2 μm, σ ¼
0.375G0=2 ¼ 14.53 μS□−1 in all cases. Note that for simplicity
we show only one quadrant, since ϕð−xÞ ¼ −ϕðxÞ. (b)–(d) The
maximum as a function of (b) the sheet conductivity σ in the 2D
half-plane (L ¼ 1 μm,W ¼ 0.2 μm), (c) source-to-drain distance
L (σ ¼ 0.25G0=2 ¼ 9.69 μS□−1,W ¼ 0.2 μm), and (d) distance
from the ballistic channel W (σ ¼ 0.25G0=2, L ¼ 1 μm). The
widths of the quasi-1D Ohmic channels are d ¼ 0.01 μm.
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FIG. 3. (a),(c) Peak position x� of the interface potential and
(b),(d) corresponding FWHM, as a function of (a),(b) the sheet
conductivity σ in the 2D half-plane and (c),(d) the distance y from
the interface (σ ¼ 0.375G0=2 ¼ 14.53 μS□−1), with L ¼ 1 μm,
W ¼ 0.2 μm in all cases. For the latter, the potential Φðx; yÞ was
considered with y > 0 fixed, instead of ϕðxÞ. Numerical solutions
for the ballistic channel are shown by orange circles, analytic
solutions of quasi-1D Ohmic channels (see Fig. 2 for conductiv-
ities) Ω1 (dashed blue), Ω2 (dash-dotted yellow), and Ω3 (dotted
purple), and a conducting lower half-plane (lhp) with σlhp ¼
G0=2 (solid green) are plotted for comparison.
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Conclusion and outlook—We extended the standard
Landauer approach to a ballistic channel in direct contact
with a conducting half-plane to which source and drain
contacts are applied. In this geometry, the current enters and
leaves the ballistic channel via the half-plane in a spatially
distributed manner. The potential at the interface between
half-plane and ballistic channel displays distinct features
compared to a quasi-1D Ohmic channel, such as a narrower
maximum and a steeper decay at large distances, and
opposite scaling of the maximumwith the distance between
the contacts. These features reflect the fundamental ballistic
nature of the channel and can be used to identify ballistic
channels in various topological materials experimentally,
using potentiometry in multitip STM, for example. Our
results thus widen the scope of multiprobe transport
experiments to ascertain the ballistic nature of edge
channels.
Our generalization of Landauer’s theory to distributed

injection can be applied to a wide range of contact
geometries in a straightforward manner, by modifying
the potential Φðx; yÞ on the left-hand side of Eq. (1) to
match the appropriate boundary conditions in the 2D bulk
region. The right-hand side of Eq. (1) can generally be
applied for setups with a symmetric positioning for source
and drain, for which ΔxðϕÞ follows naturally from sym-
metry considerations (Supplemental Material Note 2 [39]),
while a generalization for asymmetric setups remains for
future work. Furthermore, the filling condition for distrib-
uted injection can be extended to lithographic contacts that
cover both 2D bulk and edge [19], by including the current
that is directly injected and extracted via the contacts in
addition to the distributed one when matching the density
of states of the ballistic channel over the appropriate energy
range. Thus, treating 1D ballistic edge channels in terms of
the filling condition paves the way for a wide range of
experimentally relevant setups with distributed injection,
providing a valuable tool for the realistic treatment of
transport in mixed-dimensional (2D-1D or even 3D-1D)
systems [19,25,46].
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