001047475 001__ 1047475
001047475 005__ 20251031202036.0
001047475 0247_ $$2doi$$a10.3390/cancers16081535
001047475 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04326
001047475 037__ $$aFZJ-2025-04326
001047475 082__ $$a610
001047475 1001_ $$00000-0003-0170-0247$$aSchmidt, Patrick$$b0
001047475 245__ $$aMultiparametric Characterization of the DSL-6A/C1 Pancreatic Cancer Model in Rats
001047475 260__ $$aBasel$$bMDPI$$c2024
001047475 3367_ $$2DRIVER$$aarticle
001047475 3367_ $$2DataCite$$aOutput Types/Journal article
001047475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761900367_15049
001047475 3367_ $$2BibTeX$$aARTICLE
001047475 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047475 3367_ $$00$$2EndNote$$aJournal Article
001047475 500__ $$aThis research was supported by the German Federal Ministry of Education and Research (BMBF), grant number 13GW0364D (“MR-HIFU Pancreas”).
001047475 520__ $$aThe DSL-6A/C1 murine pancreatic ductal adenocarcinoma (PDAC) tumor model was established in Lewis rats and characterized through a comprehensive multiparametric analysis to compare it to other preclinical tumor models and explore potential diagnostic and therapeutical targets. DSL-6A/C1 tumors were histologically analyzed to elucidate PDAC features. The tumor microenvironment was studied for immune cell prevalence. Multiparametric MRI and PET imaging were utilized to characterize tumors, and 68Ga-FAPI-46-targeting cancer-associated fibroblasts (CAFs), were used to validate the histological findings. The histology confirmed typical PDAC characteristics, such as malformed pancreatic ductal malignant cells and CAFs. Distinct immune landscapes were identified, revealing an increased presence of CD8+ T cells and a decreased CD4+ T cell fraction within the tumor microenvironment. PET imaging with 68Ga-FAPI tracers exhibited strong tracer uptake in tumor tissues. The MRI parameters indicated increasing intralesional necrosis over time and elevated contrast media uptake in vital tumor areas. We have demonstrated that the DSL-6A/C1 tumor model, particularly due to its high tumorigenicity, tumor size, and 68Ga-FAPI-46 sensitivity, is a suitable alternative to established small animal models for many forms of preclinical analyses and therapeutic studies of PDAC.
001047475 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001047475 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047475 7001_ $$0P:(DE-Juel1)131657$$aLindemeyer, Johannes$$b1
001047475 7001_ $$0P:(DE-HGF)0$$aRaut, Pranali$$b2
001047475 7001_ $$0P:(DE-HGF)0$$aSchütz, Markus$$b3
001047475 7001_ $$00009-0009-3027-8322$$aSaniternik, Sven$$b4
001047475 7001_ $$0P:(DE-HGF)0$$aJönsson, Jannika$$b5
001047475 7001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b6
001047475 7001_ $$00000-0001-6118-5182$$aFischer, Thomas$$b7
001047475 7001_ $$00000-0002-3537-6011$$aQuaas, Alexander$$b8
001047475 7001_ $$00000-0002-1304-7719$$aSchlößer, Hans Anton$$b9
001047475 7001_ $$0P:(DE-HGF)0$$aThelen, Martin$$b10
001047475 7001_ $$00000-0002-0993-9300$$aGrüll, Holger$$b11$$eCorresponding author
001047475 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers16081535$$gVol. 16, no. 8, p. 1535 -$$n8$$p1535$$tCancers$$v16$$x2072-6694$$y2024
001047475 8564_ $$uhttps://juser.fz-juelich.de/record/1047475/files/cancers-16-01535.pdf$$yOpenAccess
001047475 909CO $$ooai:juser.fz-juelich.de:1047475$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b6$$kFZJ
001047475 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001047475 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2022$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047475 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2022$$d2024-12-14
001047475 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-14
001047475 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047475 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-14
001047475 920__ $$lyes
001047475 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001047475 980__ $$ajournal
001047475 980__ $$aVDB
001047475 980__ $$aUNRESTRICTED
001047475 980__ $$aI:(DE-Juel1)INM-5-20090406
001047475 9801_ $$aFullTexts