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Bosonic quantum error correction with neutral atoms in optical dipole traps
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Bosonic quantum error correction codes encode logical qubits in the Hilbert space of one or multiple harmonic
oscillators. A prominent class of bosonic codes is that of Gottesman-Kitaev-Preskill (GKP) codes of which
implementations have been demonstrated with trapped ions and microwave cavities. In this paper, we investigate
theoretically the preparation and error correction of a GKP qubit in a vibrational mode of a neutral atom stored
in an optical dipole trap. This platform has recently shown remarkable progress in simultaneously controlling
the motional and electronic degrees of freedom of trapped atoms. The protocols we develop make use of
motional states and, additionally, internal electronic states of the trapped atom to serve as an ancilla qubit. We
compare optical tweezer arrays and optical lattices and find that the latter provide more flexible control over the
confinement in the out-of-plane direction, which can be utilized to optimize the conditions for the implementation
of GKP codes. Concretely, the different frequency scales that the harmonic oscillators in the axial and radial
lattice directions exhibit and a small oscillator anharmonicity prove to be beneficial for robust encodings of GKP
states. Finally, we underpin the experimental feasibility of the proposed protocols by numerically simulating the
preparation of GKP qubits in an optical lattice with realistic parameters.
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I. INTRODUCTION

Fault-tolerant quantum computing requires the encoding
of quantum information in logical qubits such that quan-
tum error correction (QEC) can be performed repeatedly
[1,2]. Bosonic QEC codes, also known as continuous-variable
codes, encode logical qubits in the Hilbert space of one
or multiple harmonic oscillators [3–6]. Multiple classes of
bosonic codes have been proposed, such as cat codes [7–10],
binomial codes [11,12], and so-called Gottesman-Kitaev-
Preskill (GKP) codes [13–15]. Logical states of GKP codes,
on which we focus in the present paper, have been prepared
experimentally in microwave cavities coupled to a transmon
qubit [16–19] and with trapped ions [20–22], and also QEC
with these codes has been demonstrated in both platforms
[16,18,19,21]. Another promising experimental platform that
is well suited for quantum computing is that of neutral atoms
trapped in optical lattices or optical tweezers [23–25]. Qubit-
based quantum computing in these setups has recently shown
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great progress by demonstrating e.g. high-fidelity entangling
gates and elements of quantum error correction and fault
tolerance [26–29]. On the other hand, an atom confined by
an optical dipole trap in the three spatial dimensions exhibits
three bosonic modes, and in past years, precise control of
the motional states of such trapped atoms has been demon-
strated in experiments [30–37]. As an example, simultaneous
entanglement of both motional and electronic states of two
88Sr atoms trapped in optical tweezers has been realized lately
[37]. This raises the question of whether and how GKP codes
can be implemented in this platform as well, which has been
studied in recent Refs. [38,39] by means of trap potential
modulation. To explore opportunities of this physical platform
for bosonic QEC [40], the implementation of more general
bosonic quantum circuits shall be analyzed in this paper.

In this paper we investigate the suitability of atoms trapped
in optical tweezers and optical lattices to encode and operate
GKP qubits. Specifically, the atoms are confined in state-
dependent optical dipole traps in order to couple the atomic
motion to an ancilla qubit formed by two internal electronic
states, as indicated in Fig. 1(a). We find that anisotropic
two-dimensional (2D) optical lattices are well suited for the
encoding of GKP qubits because the harmonic oscillator
frequency in one spatial dimension can be chosen to differ
significantly from the frequencies of the other two spatial
oscillator modes, as illustrated in Fig. 1(b). This allows one
to manipulate the relevant coding mode independently from
the unused spectator modes. Furthermore, the system is scal-
able and exhibits only a small oscillator anharmonicity, which
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FIG. 1. Neutral atoms in optical dipole traps can encode GKP states. (a) An atom confined in an optical dipole trap exhibits vibrational
modes. One of these bosonic modes shall be used to encode a GKP qubit. This requires that the bosonic degrees of freedom are coupled to an
ancilla qubit formed by two electronic states of the trapped atom, e.g. the fine-structure qubit in 88Sr. (b) Optical tweezer arrays and 2D optical
lattices are both highly scalable setups. Atoms trapped in optical tweezers are confined to similar length scales in all three spatial dimensions.
In optical lattices, the traps can have a tubelike shape with strong confinement in the radial (in-plane) directions and weak confinement in the
axial (here vertical) direction. This is beneficial for the encoding of GKP states, since it allows one to realize squeezing in the radial mode only,
while heating in the axial modes is suppressed. (c) Visualization of finite square GKP code states. The Wigner function of the logical state |0�

L 〉
is shown for different values of � according to Eq. (5). The limit � → 0 corresponds to the ideal GKP code state as defined in Eq. (1).

deteriorates encoded states steadily. The paper is structured as
follows. In Sec. II we provide an introduction to GKP codes
and present protocols for preparation and error correction of
GKP code states in general. In Sec. III we explain how the
bosonic operations required to operate GKP codes, such as
squeezing and conditional displacements, can be realized with
neutral atoms in optical dipole traps. In Sec. IV we analyze the
suitability of optical tweezers and optical lattices for operation
of GKP codes in detail. We numerically simulate the prepara-
tion of a GKP code state in an optical lattice to demonstrate
the experimental feasibility of the proposed protocols. Finally,
in Sec. V we summarize our results.

II. GKP CODES

In 2001, Gottesman, Kitaev, and Preskill proposed a class
of bosonic quantum error correction codes now called GKP
codes [13], which are intensely studied nowadays. It has been
shown theoretically that they are well suited to correct for
boson loss [3,41], which is a predominant source of decoher-
ence in microwave cavities. In neutral atom platforms, heating
deteriorates quantum information encoded in the motional
state of an atom, which can also be corrected with GKP codes
[15]. Recently, break-even error correction compared to the
Fock encoding, which identifies |0L〉=̂|0〉 and |1L〉=̂|1〉, has
been achieved experimentally using a GKP code [18]. In this
section we review the basic properties of GKP codes and
outline a preparation scheme that is adapted to GKP states
with a finite boson number.

A. Ideal GKP code

Ideal GKP code states are gridlike superposition states in
phase space, composed of infinitely many quadrature eigen-
states. In the context of GKP codes, the quadrature operators
are defined as q̂ = (â† + â)/

√
2 and p̂ = i(â† − â)/

√
2, such

that [q̂, p̂] = i [42]. The square GKP code will work as an
instructive example throughout this paper. Protocols similar

to the ones discussed in the following can be devised for other
types of GKP codes. The logical zero state of the square GKP
code reads [13]

|0L〉 =
∞∑

k=−∞
|q=2k

√
π〉 =

∞∑
k=−∞

|p=k
√

π〉. (1)

The state can be interpreted as a superposition of position
eigenstates or, equivalently, as a superposition of momentum
eigenstates, which is a result of its gridlike appearance in
phase space, shown in Fig. 1(c). Ideal GKP states are an ide-
alization, since they have an infinite expected boson number
and, thus, they cannot be realized experimentally. Neverthe-
less, they build the foundation for experimentally accessible
finite GKP codes.

GKP codes are stabilizer codes, which means that all
code states are +1 eigenstates of a set of commuting oper-
ators which form the so-called stabilizer group. We will see
that specific displacements D̂(α) := exp[(αâ† − α∗â)/

√
2] =

exp[−iRe(α) p̂ + iIm(α)q̂] serve as stabilizers. Note that in
quantum optics one usually defines D̂(α) := exp[αâ† − α∗â]
which displaces â �→ â + α, while the convention for D̂ that
is typically used for GKP states displaces q̂ �→ q̂ + Re(α) and
p̂ �→ p̂ + Im(α) and hence â �→ â + α/

√
2. In GKP codes,

we have two stabilizer generators ŜX and ŜZ , which generate
an infinite group of stabilizers with elements Ŝnx

X Ŝnz
Z , where

nx, nz ∈ Z. Choosing ŜX and ŜZ as orthogonal displacements
(e.g. one as a displacement in q̂ and the other one as a displace-
ment in p̂), one obtains a rectangular GKP code. A special
case of this is the square GKP code considered in this paper,
which has stabilizer generators

ŜX = D̂(2
√

π ), ŜZ = D̂(2i
√

π ). (2)

The logical operators are

X̂L = D̂(
√

π ), ẐL = D̂(i
√

π ), (3)

thus, they correspond to displacements by half a stabilizer
distance. As usual, the Pauli-Y operator is obtained as ŶL =
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iX̂LẐL. The stabilizers commute with each other and with the
logical operators and the logical operators mutually anticom-
mute. This can be derived from the braiding relation [13]

D̂(α)D̂(β ) = e−iA(α,β )D̂(β )D̂(α), (4)

where A(α, β ) = Re(α)Im(β ) − Im(α)Re(β ) is the area in
phase space spanned by the two displacements. For two com-
muting operators A is an integer multiple of 2π , whereas for
anticommuting operators it is an odd integer multiple of π .

B. Finite GKP code

For realistic physical systems finite approximate versions
of GKP codes have been formulated [43]. One elegant form
can be constructed by suppressing high boson number contri-
butions exponentially [4]:

|ψ�
L 〉 = 2

√
π�e−�2 â†â|ψL〉. (5)

Some resulting finite GKP states are depicted in Fig. 1(c)
for different values of �. Most notably, for � → 0 the ideal
GKP state is recreated and for � → ∞ the state reduces to
the vacuum state. Inserting the logical state |0L〉 from Eq. (1)
into Eq. (5) and considering small values of � leads to the
instructive expression

|0�
L 〉 ∝

∞∑
k=−∞

e−2π�2k2
D̂(2k

√
π )Ŝ(− ln �)|0〉 + O(�4), (6)

where Ŝ(z) = exp[ 1
2 (z∗â2 − zâ†2)] denotes the squeeze op-

erator. We see that this finite GKP state is a superposition
of squeezed states where the weights decay with displace-
ment distance. The derivation of this expression is shown in
Appendix A.

For � 
 1 the parameter � can be identified with the
effective squeezing. Given a state ρ̂ it is calculated as
follows [4]:

�X,Z :=
√√√√ 1

2π
ln

(
1

|Tr(ŜX,Z ρ̂ )|2

)
. (7)

The name effective squeezing is motivated by squeezed vac-
uum states, since a state Ŝ(− ln �)|0〉 has effective squeezings
�Z = � and �X = 1/�. For general states, the values �Z

and �X are not the multiplicative inverse of each other and
for GKP states both are smaller than 1, which is why GKP
states can be interpreted as squeezed in both p̂ and q̂. For
�X,Z → 0 one obtains the ideal GKP code. In experiments
GKP states with effective squeezings in the range 0.30–0.53
have been prepared with trapped ions [20,21] and GKP states
with effective squeezings of 0.34 have been demonstrated
with microwave cavities coupled to a transmon qubit [18].
Since �X and �Z behave multiplicatively during concatena-
tion of squeeze operations, they are sometimes quantified in
dB as 10 log10(1/�2

Z,X ).

C. Preparation of GKP states

In Eq. (6) in the previous subsection we have seen that
finite GKP codes can be understood as superpositions of
squeezed states, where squeezed states that are closer to the

FIG. 2. Preparation of finite GKP states by repeated displace-
ments and postselection. Top: GKP preparation circuit in terms of the
bosonic operations squeeze (Ŝ) and displace (D̂) and qubit operations
Hadamard (H ) and projective postselection (|0〉〈0|). Bottom: Wigner
functions of the bosonic subsystem at selected times during the
first two preparation cycles. First, a squeezed state (� := �Z = 0.3,
and �X = 1/� ≈ 3.33) is created, as shown in (a). This state is an
approximate eigenstate of the stabilizer ŜZ . The state is partially dis-
placed to the right and partially to the left by an ancilla-conditioned
application of half a stabilizer distance. This is equivalent to an oper-
ator measurement of ŜX combined with an unconditional application
of Ŝ−1/2

X =̂ X̂L to recenter the state. The bosonic state is still entangled
with the ancilla, thus the bosonic state obtained when tracing over
the ancilla appears as a mixture of two squeezed states, as shown in
(b). After the application of a Hadamard gate the ancilla is projected
onto the state |0〉, thus effectively postselecting on |+〉, such that
the bosonic state is projected onto a superposition of two squeezed
states, depicted in (c1). A second round of conditional displacement
and postselection results in a superposition of three squeezed states
[D̂(−2

√
π ) + 2D̂(0) + D̂(2

√
π )]Ŝ|0〉, shown in (c2).

origin have a higher contribution. For the preparation of finite
GKP states one can thus start with a squeezed vacuum state
and create a superposition of displaced versions of it. To
create these superpositions, all methods presented will use an
additional two-level system, referred to as the ancilla qubit,
which can be coupled to the bosonic degrees of freedom. In
a neutral atom two internal electronic states can be used to
form the ancilla qubit, as indicated in Fig. 1(a) and discussed
in more detail in Sec. III. Here we outline two protocols for
GKP state preparation: The first one uses postselection on
midcircuit ancilla measurements while the second one makes
use of a corrective displacement and an ancilla reset operation.
The second scheme can also be used for error correction with
adapted parameters.

1. Postselection scheme

The postselection scheme is shown in Fig. 2. A variation
of it was formalized in Ref. [44] and it has been realized
experimentally with trapped ions in Ref. [20]. We assume
that a harmonic oscillator and a qubit have been initial-
ized in their ground states. On the harmonic oscillator, a
single squeeze operation is needed, which also determines
the final effective squeezing �Z up to experimental imper-
fections. This operation also increases �X to �X = 1/�Z ,
which then has to be lowered during the main procedure.
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The main procedure repeatedly splits the squeezed states into
two displaced copies. The Hadamard gate prepares the ancilla
qubit in the state |+〉 = (|0〉 + |1〉)/

√
2. Then, a conditional

displacement D̂(
√

π ) ⊗ |0〉〈0| + D̂(−√
π ) ⊗ |1〉〈1| is applied

and, finally, the protocol postselects on the positive superpo-
sition of both paths. The two Hadamard gates on the ancilla
qubit ensure the basis change from |0〉/|1〉 to |+〉/|−〉 for
the preparation and postselection. This procedure can also be
interpreted as a repeated stabilizer measurement and projec-
tion onto the code space. The only difference is an included
unconditional application of X̂LŜ−1

X , which changes the Kraus
operator from (1 + ŜX )/2 to K̂0 = [D̂(−√

π ) + D̂(
√

π )]/2.
This difference ensures that the state stays centered around
the origin after each cycle. From the second round on, all
new displaced states except for the leftmost and rightmost one
interfere with one other state, for example after two rounds
one obtains the Kraus operator K̂00 = K̂2

0 = [D̂(−2
√

π ) +
2D̂(0) + D̂(2

√
π )]/4 that contains three displacements. The

weighting of the states follows a binomial distribution due to
the binary random walk [45], which converges to a Gaussian
envelope as in Eq. (6). The state preparation scheme intro-
duced in Ref. [44] measures higher orders of stabilizers which
results in equal-weight superpositions of displaced squeezed
states. These are examples of a more general technique called
linear combination of unitaries [46–48].

2. Corrective displacement scheme

The previous scheme heavily relies on postselection, which
prohibits large scale parallel state preparation. Moreover,
measuring the electronic state of a trapped neutral atom
would destroy the prepared motional state because of the
large number of scattered optical photons and associated re-
coil heating during fluorescence imaging. An approach to
circumvent measurements and postselection is a correction
Ĉ = D̂(i

√
π/2) that is applied conditionally on the ancilla

qubit being in state |1〉, instead of discarding that outcome.
This correction anticommutes with the stabilizer through the
braiding relation [Eq. (4)], such that it maps the previously
discarded Kraus operator K̂1 = (1 − Ŝ )/2 to the required one,
K̂0 = (1 + Ŝ )/2:

ĈK̂1|q=0〉 = K̂0Ĉ|q=0〉 = K̂0|q=0〉. (8)

The last step relies on the fact that the state before the round
is an approximate eigenstate of the corrective displacement.
This is only true for position eigenstates and approximately
true for a squeezed state, but it is no longer the case after the
first cycle. To still use this approach, the stabilizer application
can be replaced by a channel with Kraus operators K̂� =
(1 + iŜ )/2 and K̂� = (1 − iŜ )/2. Here, both outcomes can
be corrected with a smaller corrective displacement Ĉ±δk/2 =
D̂(±iδk

√
π/4). This approach is adapted from a scheme de-

vised for error correction of finite GKP states [49], where it
realizes a compromise of just a weak perturbation of the pre-
procedure state and inclusion of information from the error
correction round. We numerically optimize the parameters
δk to achieve a minimal �X and find optimal values δ1 = 1,
δ2 = 0.5, δ3 ≈ 0.31, δ4 ≈ 0.217, and δ5 ≈ 0.167 when start-
ing from a squeezed state with �Z = 0.3. Note that the
obtained values of δk are larger than the ones one would use

for the error correction procedure because we cope with large
initial values of �X . This results in a complete preparation
procedure to reach small values of �X . Note that this protocol
always produces statistical mixtures of states with different
values of �X , since the initial squeezing does not prepare a
perfect quadrature eigenstate. Figure 3 shows the quantum
circuit which, for ε = 0, can be used for the preparation of
GKP code states. In Appendix B we explicitly derive the
approximate GKP states prepared in the first three cycles. A
similar approach has been proposed in Ref. [50] and used in
Ref. [21] for state preparation, using integer multiples of the
stabilizer displacement distance instead of only D̂(±√

π ) and
finding analytical expressions for δk in that setup. Note that
the qubit reset of a neutral atom requires scattering of just a
few photons. This procedure is therefore less detrimental for
the encoded motional state than a qubit measurement.

The procedure outlined above can be adapted to work for
error correction instead of state preparation. Since in any
experimental setup encoded GKP states continuously undergo
incoherent noise processes, such as boson loss, heating, or os-
cillator dephasing, one has to perform QEC cycles repeatedly
in order to preserve the encoded quantum information. In the
scheme above, in each round the state is partially displaced to
a higher position quadrature, thus it should not be repeated
infinitely often on an oscillator with an upper limit on the
occupation number. To prevent this, de Neeve et al. [21] in-
troduced an ancilla prerotation step (see the first displacement
in Fig. 3). It has the effect that the stabilizer application does
not displace the state symmetrically inwards and outwards,
but with a bias towards the center, as detailed in Ref. [21].
This bias is achieved by rotating the ancilla conditioned on
the position quadrature by an angle q̂

√
πε/4. This is equiv-

alent to a conditional displacement D̂(±iεk
√

π/4) like in the
correction step, so it can be realized with the same techniques.

As a side remark, the complete correction scheme can al-
ternatively be derived formally from a dissipative map which
causes a decay towards the ground state of an unphysical
Hamiltonian proportional to ln[exp(−�2n̂)ŜX exp(�2n̂)], as
shown in Ref. [49]. The operator exp(−�2n̂)ŜX exp(�2n̂) is
an exact stabilizer for a finite GKP state |ψ�

L 〉 with fixed �.
Through Trotterization of such a dissipator, ideal displace-
ment distances ε = δ = sinh(�2) and a stabilizer application
distance increased by a factor of cosh(�2) can be derived.

III. PREPARATION OF GKP STATES IN NEUTRAL ATOMS

Neutral atoms can be confined in optical dipole traps,
whose most prominent representatives are optical tweezers
and optical lattices [51–54]. Close to the trap minima, the mo-
tion of single atoms can to a good approximation be described
by a three-dimensional harmonic oscillator. Any of the three
directions can be used to encode a GKP state, even though
some of them show favorable properties over the others. In
the previous section we saw that an additional qubit degree of
freedom that can be coupled to the motional state is required.
For this we will dedicate two electronic levels of the atom.
We begin this section by recalling how a harmonic oscillator
Hamiltonian arises for a neutral atom trapped by a Gaussian
laser beam. Then we explain how squeeze operations and con-
ditional displacements required for the preparation of GKP
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FIG. 3. Deterministic preparation of finite GKP states. Top: GKP state preparation and error correction circuit, consisting of a squeeze
operation (Ŝ), conditional prerotation D̂(±iε

√
π/4), stabilizer application D̂(±√

π ), and correction D̂(±iδ
√

π/4). Each stabilizer application
includes an unconditional application of X̂L , such that the resulting state after three cycles is of type |1�

L 〉. The required operations on the
ancilla qubit are X rotations RX (θ ) = exp(−iθσx/2), where σx denotes the Pauli X matrix, Hadamard gates H , and qubit reset. Bottom:
Wigner function of the bosonic subsystem at selected points in time during the first three state preparation cycles with εk = 0 and δ1 = 1,
δ2 = 0.5, δ3 ≈ 0.31.

states can be realized in this platform. Details on the ancilla
qubit operations, such as single-qubit gates or reset, are not
yet considered; we just ensure that in the composed protocols
enough time is reserved to implement them.

A. Optical dipole traps

A laser which is far detuned from an atomic transition can
cause a decrease in energy of one or several atomic levels
due to the ac Stark effect [55]. This decrease in energy is
proportional to the light intensity I . Under the assumption
that the electronic dynamics are much faster than the atomic
motion, the intensity-dependent energy thus acts as a potential
U (x) ∝ −I (x) for the atom. In Appendix C we provide a
short introduction to optical dipole traps. The potential U (x)
in general depends on the atom’s electronic state. A crucial
requirement, however, is that both qubit states of the atom
experience the same trapping potential, to avoid unintentional
coupling of the ancilla qubit with the bosonic degrees of
freedom. Therefore, one chooses the trap laser to work at a
so-called magic wavelength [56,57] for the specific ancilla
qubit. At exactly this wavelength, the trap potential is equal
for the atom in either of the electronic ancilla states.

In a typical dipole trap, for example, a radial mode of an
optical tweezer, the intensity profile and thus the potential can
be modeled by a Gaussian

U (x) = −U0e
−2 x2

w2
0 = −U0 + 2

x2

w2
0

U0 + O(x4), (9)

where U0 is the trap depth and w0 describes the beam
width. Close to the trap bottom, the potential can be ex-
panded up to second order, yielding a harmonic oscillator
potential. In Sec. IV we analyze the potentials of realistic
dipole traps, including higher-order anharmonic terms, while
in this section the harmonic approximation is used to make
the preparation scheme explicit. Combining the harmonic po-
tential with the kinetic energy of the atom gives rise to the

Hamiltonian of a quantum harmonic oscillator:

Ĥ = P̂2
x

2m
+ 1

2
mω2x̂2, (10)

where x̂ = √
h̄/(mω) q̂ and P̂x = √

h̄mω p̂ are the physical po-
sition and momentum operators of the atomic center of mass.
For the Gaussian beam in Eq. (9) the oscillator frequency is
calculated to be

ω = 2

w0

√
U0

m
. (11)

For beam profiles that deviate from a Gaussian, w0 has to be
replaced by a similar characteristic length scale, as will be
discussed in Sec. IV B.

B. Squeezing

A squeeze operator is naturally generated by a Hamiltonian
proportional to x̂2. Thus, an unconditional squeezing can be
achieved by quickly changing the potential depth U0 to a value
U ′

0 [36]. The resulting change in potential curvature changes
the oscillator frequency ω ∝ √

U0 according to Eq. (11). The
oscillator motion switches from a circular motion to a slower
(or faster) elliptic rotation at a frequency ω′, as pictured in
Fig. 4. After a rotation of π/2 in the elliptic oscillator, one
obtains a squeezed state

Ŝ[ln(ω′/ω)]|0〉 (12)

when starting in the bosonic vacuum |0〉. Note that this proce-
dure is specifically engineered to transform the vacuum into
a squeezed state. A derivation and general description as a
unitary are sketched in Appendix D. In general, states also
accumulate a dynamical phase compared to an idling oscilla-
tor due to the modified rotation speed. Note that this scheme
has so far considered an isolated bosonic mode although one
has to keep in mind that with a change of beam intensity the
oscillator frequencies of all three spatial vibrational modes
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p

q q q

p p
FIG. 4. Squeezing the motional state of a neutral atom. Panel

(a) shows a Gaussian trap potential of depth U0 (solid blue line), its
harmonic approximation (dashed blue line), as well as a sketch of a
wave packet (black) and the Wigner function corresponding to the
vacuum state of the harmonic oscillator. Changing the laser intensity
and thus the potential depth rapidly from U0 to U ′

0 results in a change
of the oscillator frequency from ω to ω′. This causes the wave packet
to disperse, as shown in panel (b). After a quarter of an oscillator
period, t = π/(2ω′), the original potential depth is restored, as indi-
cated in panel (c). The resulting state is a momentum-squeezed state.

are changed. In Appendix D we study how one can squeeze
just the z mode of an anisotropic three-dimensional harmonic
oscillator with ωz 
 ωx,y. This can be achieved by adjusting
the potential depth at a rate that is fast compared to ωz but
appears adiabatic to the x and y mode.

C. Displacement

For the protocols described in Sec. II, ancilla-conditioned
displacements are required. An unconditional displacement
D̂(α) can be realized by moving the trap center, and thus
the reference frame rapidly by d = −α�x, where �x =√

h̄/(mω) is the harmonic oscillator length. Alternatively, one
can use an additional laser beam operating at the magic wave-
length to realize a force − f x̂ and thus shift the trap center.
A conditional displacement must end in a shared reference
frame for the displaced and nondisplaced path. Thus, the
effective trap center can be moved through a state-dependent
force term − f x̂ ⊗ |1〉〈1| added to the Hamiltonian and then
be moved back by disabling the force [58]. For simplicity we
consider constant forces that are switched on and off instanta-
neously. Such a state-dependent force can be realized with an
additional laser operating at a so-called tune-out wavelength
[59]. At this wavelength one of the qubit levels experiences
no ac Stark shift while the other one experiences a nonzero
shift. The application of a constant force f corresponds to a
displacement of the trap center by a value

αd = f√
h̄mω3

(13)

in phase space. In a duration t this realizes the unitary

Û (t ) = D̂(αd [1 − e−iωt ])R̂(ωt )eiθ (t ), (14)

for an atom in the electronic state |1〉, depicted in Fig. 5. This
is not a pure displacement but includes a rotation R̂(ωt ) =

p

q

p

q

FIG. 5. Conditional displacement of the motional state of a
neutral atom. Panel (a) shows one-dimensional cuts of the trap
potentials for the magic wavelength trap (blue) and the tune-out
wavelength trap (red) realizing a state-dependent potential. Solid
lines correspond to the Gaussian potentials, while dashed lines indi-
cate harmonic approximations in the center. Note that the tune-out
potential is placed such that the quadratic term vanishes. Panel
(b) shows the combined potentials which an atom experiences in
the two electronic qubit states |0〉 and |1〉. Both oscillators have
approximately the same frequency ω but different center points.
Panel (c) shows the dynamics of a Fock state under this potential,
which is a conditional displacement combined with an unconditional
rotation in phase space [see Eq. (14)]. Combining this operation with
an idling rotation realizes a conditional displacement according to
Eq. (15).

e−iωt â†â and the acquisition of a phase θ (t ) = 1
2α2

d [ωt −
sin(ωt )] which only matters if the operation is conditioned on
the ancilla qubit. If one includes equal waiting times before
and after the displacement pulse, such that the procedure takes
a full oscillator cycle, the direction of the displacement no
longer depends on the displacement duration t :

R̂(π − ωt/2) Û (t ) R̂(π − ωt/2) = D̂[−2iαd sin(ωt/2)]eiθ (t ).

(15)

The distance of the displacement can then be controlled by the
two parameters f and t , while the direction can be controlled
independently by choosing an appropriate starting time of the
whole procedure. In Appendix D we derive these relations in
more detail.

The force can be realized by placing a Gaussian laser beam
of width w1 and depth U1 which operates at the tune-out wave-
length at a distance of w1/2 next to the trap center. At exactly
this distance the curvature is zero such that the harmonic part
of the potential is neither increased nor decreased. The atom
then experiences a force f = 2e−1/2U1/w1 and its potential
energy is lowered by an amount e−1/2U1. This lowering in
energy does not affect the bosonic mode but acts as a phase
feedback e−1/2U1t/h̄ on the ancilla qubit which is added to
θ (t ). The phase must either be fine-tuned to a multiple of 2π
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or corrected through an ancilla-only operation. Methods from
optimal control or pulse echoing may also prove useful for
this fine-tuning [60]. The beam waist w1 should be as large as
possible because the unwanted higher orders scale with 1/w3

1
while the gradient and thus displacement speed only decrease
with 1/w1. These issues will be discussed in more detail in the
following section.

IV. DISCUSSION OF REALISTIC SETUPS

In this section we analyze the suitability of atoms confined
in realistic dipole traps to encode GKP states. Two types of
optical dipole traps are commonly used for experiments with
cold atoms: optical tweezers and optical lattices. The poten-
tials in these platforms are in general not purely harmonic.
Therefore, we study the oscillator parameters for these setups
analytically and we perform an exemplary state preparation
simulation with realistic potentials. We anticipate here that
we find that for a minimal anharmonicity the ratio of the
oscillator frequency ωz and trap depth must be as small as
possible, which can be understood as a high capacity for
bosonic excitations. In order to reduce the coupling between
the coding mode z and the spectator modes x and y, a high
mismatch of oscillator frequencies ωz 
 ωx,y is beneficial.

A. GKP states in an anharmonic oscillator

Given the potential of a one-dimensional Gaussian laser
beam as in Eq. (9), the harmonic oscillator is derived by
discarding terms of order O(z4). We now consider a multi-
dimensional oscillator, which includes couplings between
modes of the form q̂2

z q̂2
x and also contains anharmonic con-

tributions proportional to q̂4
i . A two-dimensional anharmonic

oscillator Hamiltonian thus reads

Ĥanh

h̄ωz
= â†

z âz + ωx

ωz
â†

x âx − ηzq̂
4
z − ηx

ωx

ωz
q̂4

x − εzxq̂2
x q̂2

z . (16)

We call the dimensionless coefficients ηi anharmonicities and
refer to εzx as coupling to the mode x. For a complete three-
dimensional picture, terms with x → y must be included as
well. A nonzero anharmonicity ηz causes the rotation speed
in phase space to decrease with the distance from the origin.
This limits the lifetime and the maximal size of encoded GKP
states, which we discuss in more detail below.

The effect of the coupling cannot be treated indepen-
dently from the behavior inside the unused spectator modes
x and y. A multidimensional harmonic oscillator that includes
couplings proportional to q̂2

i q̂2
j is known as Pullen-Edmonds-

Hamiltonian [61]. In contrast to the anharmonicity ηz, the
coupling will not entirely be interpreted as noise, but it will
be partially absorbed into a redefinition of the oscillator fre-
quency. The anharmonic Hamiltonian from Eq. (16) can be
rewritten as follows:

Ĥanh

h̄ωz
= p̂2

z + q̂2
z (1 − εzx )

2
+ ωx

ωz
â†

x âx − ηzq̂
4
z − ηx

ωx

ωz
q̂4

x

− εzx

4

(
â†2

x + 2â†
x âx + â2

x

)(
â†2

z + 2â†
z âz + â2

z + 1
)

+ const. (17)

This can be interpreted as a redefined oscillator with
ωz �→ (1 − εzx )1/2ωz and q̂z �→ (1 − εzx )1/4q̂z, p̂z �→ (1 −
εzx )−1/4 p̂z. For ωx/ωz � 1, the terms that include â2

x or â†2
x

can be neglected through a rotating-wave approximation. The
term proportional to n̂x = â†

x âx becomes irrelevant if the x
mode can be kept in the ground state. Thus, it is beneficial
if the oscillator level spacing, i.e. the oscillator frequency ωx,
is large.

To quantify the suitability of a trap candidate to host a
GKP state we perform the following numerical analysis. We
consider an initial finite GKP state |0�

L 〉 and let it undergo
time dynamics generated by the trap Hamiltonian of interest,
while monitoring the fidelity F with respect to the initial
state, the expected logical operator 〈ZL〉, and the effective
squeezings �X,Z . Physically, this corresponds to idling of the
finite GKP state placed in a certain trap potential. We consider
the time it takes for the fidelity F to decay to a value of 2/3
as a simple measure for the trap quality and call it finite GKP
survival time τ�. This quantity is not meant to be a rigorous
coherence time; it rather serves as a benchmark, which allows
one to compare the suitability of different trap candidates. In
Fig. 6 we show the evolution of a finite GKP state |0�

L 〉 with
� = 0.25 in two different trap potentials that correspond to
an exemplary optical tweezer and an exemplary optical lattice
setup. We choose � = 0.25 (12 dB of squeezing) since this
value of � is realistic to achieve in experiments, while it was
shown to be slightly below threshold for concatenating the
GKP code with the surface code [62]. From Figs. 6(a) and
6(c) we can identify finite GKP survival times of τ0.25 ≈ 2 os-
cillator cycles for the exemplary tweezer setup and τ0.25 ≈ 20
oscillator cycles for the lattice, which we will discuss in more
detail in the following subsection.

B. Comparison of optical tweezers and optical lattices

An optical tweezer is a highly focused laser beam, where
the beam waist at the focal point approaches the diffraction
limit given by the wavelength of the light. This causes the
single trap at its focal point to have similar sizes in all three
dimensions and thus three modes with similar frequencies, as
illustrated in Fig. 1(b). The full potential follows a Gaussian
profile in the radial directions x and y and a Lorentzian profile
in the axial direction z [66]. For the Gaussian tweezer, the
beam waist w0 and the Rayleigh range zR determining the trap
size in axial direction are interdependent via zR = πw2

0/λ. An
optical lattice, on the other hand, is formed by retroreflected
or folded interfering laser beams with transverse waists sig-
nificantly larger than the wavelength. The trap potential along
the beam is determined by interference and thus, the resulting
trap spacing is of the order of λ/2, depending on the exact
implementation [see Fig. 1(b)]. In a 2D optical lattice, the
potential in x and y is created by beam interference, whereas
the confinement in the z direction is determined by the beam
width. The potential is described by a cosine in x and y, while
it follows a Gaussian profile in the perpendicular z direction.
Details on the potential shapes are provided in Appendix E.
The potentials of an optical tweezer and a 2D optical lat-
tice can be expanded to determine the oscillator frequencies,
anharmonicities, and couplings analytically. These quantities
follow the equations shown in Tables I and II.
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FIG. 6. Evolution of a finite GKP state in realistic trap potentials. The figure shows how a finite GKP state |0�
L 〉 with � = 0.25 evolves in

trap potentials corresponding to (a, b) an exemplary optical tweezer setup (Table I, Example I) and (c, d) an exemplary optical lattice setup
(Table II, Example II). Panels (a) and (c) display the evolution of the fidelity F with respect to the initial state, the expected logical operator
〈ZL〉, and the effective squeezings �X,Z . Panels (b) and (d) show the respective Wigner functions at selected points in time. We define the
finite GKP survival time τ� as the time it takes for the fidelity F to decay to a value of 2/3. The exemplary tweezer therefore exhibits τ0.25 ≈ 2
oscillator cycles, while for the exemplary lattice setup we find τ0.25 ≈ 20 oscillator cycles.

Considering Table I for an optical tweezer, we see that
the ratio of radial and axial trap frequencies is given by
ωx/ωz = √

2πw0/λ. The anharmonicity ηz and the couplings
εzx,zy can be interpreted as an inverse “boson capacity,” i.e.
single excitation energy h̄ω divided by the trap depth U0.
Moreover, the table displays concrete numbers for three exem-
plary tweezer setups. To be specific, we examine 88Sr atoms
with mass m = 87.9 u and consider a trap laser with wave-
length λ = 1040 nm. More details on the choice of ancilla
qubit and therefore the wavelength of the laser will follow
in the next subsection. Two parameters that one can vary in
an optical tweezer experiment are the beam waist w0 and
the trap depth U0. The optical power per beam, however,
scales as P ∝ U0w

2
0. Therefore, increasing the beam waist

at constant trap depth requires increasing optical power per
individual tweezer, which in turn limits the size of the tweezer
array. The highlighted setup Example I (w0 = 1 µm, U0/kB =
1.5 mK) corresponds to a tightly focused tweezer [63,64]. The
time evolution of a finite GKP state in this trap is shown
in Figs. 6(a) and 6(b), indicating a finite GKP survival time
τ0.25 ≈ 2 oscillator cycles. The trap anharmonicity can be
reduced by increasing the beam waist w0 at constant optical
power, corresponding to Example I.b in the table. However,
we see that this comes at the expense of a shallower trap and
smaller trap frequencies of the z mode as well as the spectator
modes. Increasing the waist w0 at constant trap depth reduces
the anharmonicity even further, as can be seen from Exam-
ple I.c; however, the higher optical power requirements per

TABLE I. Oscillator parameters for an optical tweezer. The table shows how the oscillator frequencies ωx,y,z, anharmonicity ηz, and
couplings εzx,zy depend on the trap depth U0, the wavelength of the dipole trap laser λ, the beam waist w0, and the mass m of the trapped
atom. The GKP state shall be encoded in the z mode with anharmonicity ηz, which couples with coefficients εzx,zy to modes of frequency ωx,y,
as shown in Eq. (16). The anharmonicities and couplings can be interpreted as an inverse “boson capacity,” i.e. single excitation energy h̄ω

divided by the trap depth U0. Three exemplary setups are shown for 88Sr atoms trapped in λ = 1040 nm tweezers. Example I describes a tightly
focused tweezer [63,64]. The trap depth in Example I.b is chosen such that a single tweezer requires the same optical power P ∝ U0w

2
0 as in

Example I. The required optical power per tweezer in Example I.c is 2.25 times larger as compared to the other cases.

Example I Example I.b Example I.c
w0 = 1 µm w0 = 1.5 µm w0 = 1.5 µm

Optical tweezer U0/kB = 1.5 mK U0/kB = 667 µK U0/kB = 1.5 mK

ωz

√
2λ

πw2
0

√
U0
m 2π × 28 kHz 2π × 8 kHz 2π × 12 kHz

ωx,y
2

w0

√
U0
m 2π × 120 kHz 2π × 53 kHz 2π × 80 kHz

ηz
1
4

h̄ωz
U0

2.2 × 10−4 1.5 × 10−4 1.0 × 10−4

εzx,zy
1
2

h̄ωx,y

U0
1.9 × 10−3 1.9 × 10−3 1.3 × 10−3
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TABLE II. Oscillator parameters for a 2D optical lattice. The table shows how the oscillator frequencies ωx,y,z, anharmonicity ηz, and
couplings εzx,zy depend on the trap depth U0, the wavelength of the dipole trap laser λ, the beam width w0, and the mass m of the trapped atom.
The GKP state shall be encoded in the z mode. Three exemplary setups are shown for 88Sr atoms trapped in a λ = 1040 nm optical lattice.
Example II has recently been realized in Ref. [65], demonstrating a lattice with more than 20 000 sites. The optical power scales as P ∝ U0w

2
0 ,

thus Example II.b requires the same optical power, whereas Example II.c requires less. Note, however, that the size of the lattice array depends
on the beam width and therefore Examples II.b and II.c provide fewer lattice sites than Example II.

Example II Example II.b Example II.c
w0 = 20 µm w0 = 10 µm w0 = 10 µm

Optical lattice U0/kB = 1.5 mK U0/kB = 6 mK U0/kB = 1.5 mK

ωz
2

w0

√
U0
m 2π × 6 kHz 2π × 24 kHz 2π × 12 kHz

ωx,y
2π

λ

√
U0
m 2π × 362 kHz 2π × 725 kHz 2π × 362 kHz

ηz
1
8

h̄ωz
U0

2.4 × 10−5 2.4 × 10−5 4.8 × 10−5

εzx,zy
1
4

h̄ωx,y

U0
2.9 × 10−3 1.4 × 10−3 2.9 × 10−3

individual tweezer limit the number of traps that can be pro-
duced for the total array.

Table II displays the oscillator characteristics for an
anisotropic two-dimensional optical lattice setup. A crucial
difference to the tweezer array is that a single beam with a
large vertical waist w0 is used to create the entire lattice. While
this large waist sets the trap frequencies along the vertical z di-
rection, the trap frequencies ωx and ωy are entirely determined
by the trap depth and wavelength of the trapping laser. The
frequency ratio given by ωx/ωz = πw0/λ is therefore larger
for the lattice. Again, the anharmonicity ηz and the couplings
εzx,zy can be interpreted as an inverse boson capacity. As
for the tweezer, three exemplary setups are shown for 88Sr
atoms trapped by a laser with wavelength λ = 1040 nm. The
parameters of Example II correspond precisely to a recent
experiment realized in Ref. [65]. In Figs. 6(c) and 6(d) we
show the time evolution of a GKP state in this trap potential
from which we deduce a finite GKP survival time τ0.25 ≈ 20
oscillator cycles. Example II.b considers a smaller beam waist
at constant optical power. It comes with the disadvantage of
a smaller number of trap sites but provides larger absolute
oscillator frequencies. Example II.c shows the parameters for
a smaller vertical waist at constant trap depth. This setup
requires less optical power but exhibits an increased trap an-
harmonicity. We note that the power overhead could be used
to enlarge the lattice array.

Comparing the suitability of optical tweezers and optical
lattices to host GKP states, we first examine the number
of trapped atoms which can be operated in these setups at
comparable optical powers. The lattice setup Example II has
demonstrated the creation of an optical lattice array with more
than 20 000 sites, which can be operated continuously with
more than 1000 sorted individual atoms [65,67]. In a tweezer
array the total optical power is divided evenly among the
tweezers. This means that larger arrays can be assembled if
the power requirements per individual tweezer are small. For
the same total power that allows one to realize more than
10 000 lattice traps in Example II [65], at most a few hundred
tweezers can be produced for the setups in Examples I and
I.b for strontium under realistic assumptions. As discussed in
the previous subsection, a large frequency mismatch between
the coding mode and the spectator modes is beneficial to

minimize detrimental effects that result from the coupling
between modes, which holds particularly true for the opti-
cal lattices. Moreover, we find that the optical lattice setups
obey smaller trap anharmonicities than the tweezer examples.
When it comes to idling of GKP states, i.e. preserving encoded
information for as long as possible, a small anharmonicity is
crucial and we therefore conclude that a typical optical lattice
setup is advantageous as compared to an optical tweezer ar-
ray in this regard. Eventually, however, a truly flexible setup
would be a static optical lattice augmented with dynamical
optical tweezers. We envision an optical lattice that is sparsely
filled with atoms, each encoding a GKP qubit. Optical tweez-
ers can then be employed to perform operations such as
displacements on individual atoms without crosstalk.

C. Exemplary GKP state preparation in an optical lattice

Finally, we discuss a concrete implementation example and
we numerically simulate the preparation of a finite GKP state
by implementing the scheme shown in Fig. 3 utilizing realistic
tweezer and lattice potentials. As a specific example, and
based on the preceding discussion, we consider atoms trapped
in an optical lattice.

Requirements for the electronic ancilla qubit are the exis-
tence of magic and tune-out wavelengths, and sufficiently fast
single-qubit gates and qubit reset. Here we briefly discuss the
necessity of fast single-qubit gates. The state preparation and
error correction protocol shown in Fig. 3 requires the repeated
application of single-qubit gates on the ancilla. It is therefore
crucial that single-qubit gates can be executed on a time scale
that is very short as compared to the finite GKP survival time.
For a single-qubit Rabi frequency � one thus requires that
�τ�/(2π ) � 1. The exemplary setup we consider exhibits a
finite GKP survival time τ0.25 ≈ 20 oscillator cycles, where
the oscillator frequency is ωz = 2π × 6 kHz. A suitable an-
cilla qubit candidate is therefore the electronic fine-structure
qubit in 88Sr formed by the two metastable states 3P0 and
3P2. Rabi frequencies of the order of 2π × 100 kHz have
been demonstrated for this qubit encoding [68,69], such that
�τ0.25/(2π ) > 300. Another prominent qubit in 88Sr is the
optical clock qubit formed by the states 1S0 and 3P0 [70–72].
In recent experimental works, single-qubit Rabi oscillations
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with Rabi frequencies � ≈ 2π × 1 kHz have been achieved
[73,74]. The duration of a single-qubit gate in the optical
clock qubit is therefore of the same order of magnitude as
the oscillator period and �τ0.25/(2π ) ≈ 3. Utilizing the clock
qubit would therefore prolong every cycle of the state prepara-
tion procedure by several oscillator periods. This increases the
time for which the atoms are exposed to the anharmonic po-
tential deteriorating the state steadily. However, if the quantity
�τ� can be enhanced, e.g. by increasing the single-qubit Rabi
frequency working with three-photon coupling [75–77], or by
using a trap that exhibits a larger finite GKP survival time, the
clock qubit could become equally suitable. Here we continue
our discussions considering the fine-structure qubit in 88Sr and
therefore consider a laser wavelength λ = 1040 nm, which
can trap both states of the fine-structure qubit in approxi-
mately the same potential, such that the qubit decouples from
the bosonic modes (magic wavelength). Also fast reset of the
fine-structure qubit is possible [77]. However, to minimize
heating caused by photon recoil during the reset, larger trap
frequencies allowing for smaller Lamb-Dicke parameters are
beneficial.

We now proceed with the simulation of the preparation
of GKP states in a realistic optical lattice, utilizing an op-
tical tweezer to implement the displacements. For the trap
Hamiltonian, the kinetic energies and the full three-
dimensional lattice potential (see Appendix E) are evaluated
via matrix exponentiation in the Fock basis of the coupling-
corrected harmonic oscillators. As lattice parameters, the
aforementioned parameters from Table II, Example II are
chosen, resulting in an oscillator with frequency ωz ≈ 2π ×
6 kHz and anharmonicity ηz ≈ 2.4 × 10−5.

The squeezing procedure depicted in Fig. 4 is performed
with a temporary potential decrease to U0/10, switching
to an elliptic rotation with ω′ = ωz/

√
10 ≈ 2π × 1.9 kHz.

The necessary duration in that oscillator then is 2π/(4ω′) ≈
132 µs, which corresponds to roughly 80% of a normal os-
cillation cycle time of ≈167 µs. To keep the x and y modes
in the ground state, the switch to the lower intensity is not
done instantaneously, but over a ramping duration of 20 µs.
This causes the dynamics of the state in the z mode to deviate
slightly from the ideal dynamics, but appears mostly as an
adiabatic change to the x and y modes, which temporarily slow
down from an oscillator period of ≈2.76 µs to ≈8.74 µs. In
Appendix D we analyze the squeezing procedure by means of
a fast decrease of the trap depth in more detail. The simulation
indicates that a ground-state population 〈0x0y|Trz(ρ)|0x0y〉 >

98% in the x and y modes can be sustained with these pa-
rameters. Applying pulse profiles that are optimized using
techniques from control theory can potentially improve this
even further [39,60]. Excitations in the x or y mode lead to a
further slowdown of the oscillator in z, similar to the shift in
Eq. (17). Note that later error correction cycles applied on the
GKP state encoded in the z mode do not remove excitations in
the spectator modes. As a worst-case estimate, the infidelity
from excitations in x and y can be considered as lost, decreas-
ing the fidelity once in the beginning. In our simulations we
consider a Hilbert space with dimension 18 × 18 × 36, where
nz = 36 is the highest considered excitation of the GKP mode
and nx = ny = 18 is the cutoff for the x and y modes. This
results in a squeezed state with �Z < 0.35 and �X > 1 (see

(a)

(b)

(c)

FIG. 7. Simulation of GKP state preparation in an optical lattice.
(a) Pulse scheme for the preparation of a GKP state (see Fig. 3).
(b) Effective squeezings �X,Z , expected logical operator |〈ZL〉|, and
fidelity F with respect to a reference GKP state in the course of
the protocol. Note that the protocol prepares a logical state of type
|0L〉 after even numbers of preparation cycles, while the state is of
type |1L〉 after odd numbers of cycles, as explained in Sec. II C.
The reference state for the fidelity measure therefore alternates be-
tween |00.25

L 〉 and |10.25
L 〉 with every cycle. All quantities are obtained

from a state simulation discussed in the main text. The procedure
starts in the vacuum state with �X = �Z = 1. The squeezing pulse
yields �Z ≈ 0.32 ≈ 1/�X . The displacement cycles reduce �X and
increase the fidelity F stepwise, while the oscillator anharmonicity
and the coupling between modes continuously degrade the state.
(c) Wigner functions of the prepared states after each preparation
cycle, i.e. after oscillator cycles 3, 5, and 7. The effect of the anhar-
monicity is visible as a nonideal rotation at the edge of the state and
the effect of the coupling is visible as a slight smearing on the outer
dots of the state.

Fig. 7). After the squeezing procedure, the simulation changes
to a mixed state simulation in a Hilbert space with dimension
4 × 4 × 36, which is enough to incorporate first-order effects
of the couplings â†2

x , â†
x âx, and â2

x .
The displacement sequence is performed according to the

deterministic scheme shown in Fig. 3 for three repetitions
with εk = 0 and values δk which produce a minimal effec-
tive squeezing �X under ideal displacements, discussed in
Sec. II C. To include all orders of anharmonicity and coupling,
the displacements have not been implemented as ideal uni-
taries, but by addition of tune-out potentials from adequately
placed one-dimensional Gaussian laser beams of width w1 =
20 µm. For this proof-of-principle simulation we do not take
tweezers addressed to individual atoms. We rather consider
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a single large tweezer that is used to illuminate all atoms
simultaneously in order to prepare each atom in a GKP state.
Pictorially, for an optical lattice array placed in the x-y plane
and motional states encoded in the z mode of trapped atoms,
we consider a large tweezer the axis of which is oriented
perpendicular to the z axis and slightly shifted out of the
x-y plane. For simplicity, we place two such displacement
lasers, one with a |0〉-tune-out wavelength and one with |1〉-
tune-out wavelength. Their potential peak is chosen to be
U1/h̄ = 2π × 2 MHz, which is around 7% of the trap depth.
The force f of these beams then moves the effective trap cen-
ter by |αd | ≈ 2.81 in opposing directions conditioned on the
ancilla state. A stabilizer displacement D̂(±√

π ) then requires
a pulse duration ωt/(2π ) ≈ 0.1020 according to Eq. (15) [see
the longest displacement pulse in Fig. 7(a)]. To achieve the
targeted δ1 = 1 in the first round, pulse durations ωt/(2π ) ≈
0.0251 are needed. The second round needs for δ2 = 0.5 ap-
proximately half of that with ωt/(2π ) ≈ 0.0125 and the third
one for δ3 = 0.303 even less with ωt/(2π ) ≈ 0.0076. The
single-qubit operations of the electronic ancilla are modeled
as ideal rotations with a Rabi frequency � = 2π × 100 kHz,
which is faster than the bosonic mode by a factor of approxi-
mately 20.

As seen in Fig. 7(b), the first displacement cycle reduces
�X from 3.33 to roughly 0.47. The second and third cycle
lower it further to �X ≈ 0.33 and ≈0.27, respectively. The
fidelity with respect to to the corresponding “target” GKP
state with � = 0.25 increases with every preparation cycle.
The effective squeezing �Z and the expected logical operator
|〈ZL〉| are mainly unaffected by the displacement procedures.
However, the anharmonicity and coupling of the trap beam
and displacement beam slowly degrade all of these quantities
over time. This effect is still quite moderate, indicating that the
effective squeezings can still be decreased further with current
levels of anharmonicity in a lattice.

Imperfect ground-state initialization due to finite cooling
will lead to initial effective squeezings �X ,�Z > 1. In an
experiment, recoil heating and trap noise, in particular relative
intensity noise [52,78,79], will continuously deteriorate the
state as well. For simplicity, they are not part of this simulation
since they are not expected to dominate the behavior during
the preparation. To get an idea of the time scale on which
heating has to be taken into account, a rough calculation can
be performed. Considering the lattice setup in Ref. [65], the
lifetime of atoms in the traps is of the order of several seconds.
Taking a lifetime of 10 s, trap frequencies in the x and y modes
of 300 kHz, and a trap depth of 30 MHz (corresponding to
1.5 mK), we obtain about 100 confined levels. This implies
the increase of the temperature by one motional quantum
every 100 ms, corresponding to 600 oscillator cycles of the
z mode with frequency 6 kHz. This very rough estimate of
the heating time scale is orders of magnitude larger than the
time scale on which effects of the trap anharmonicity become
visible. Note that in this estimation we use the trap frequency
of the spectator modes because heating rates increase with trap
frequencies in optical traps [78] and are thus dominated by the
mode with the largest trap frequency.

In Fig. 7(c) we show the Wigner functions of the prepared
states after each preparation cycle. The anharmonic contribu-
tions appear as nonideal rotations towards the edges of the

state. However, overall the final state closely resembles the
desired state from Fig. 3, which demonstrates the successful
state preparation.

V. CONCLUSION AND OUTLOOK

In this paper we have shown how GKP states can be
prepared deterministically in the motional mode of an atom
confined in an optical dipole trap. We suggest to use a de-
terministic preparation scheme, adapted from error correction
of GKP states, and numerically identify optimal corrective
displacement distances δk for k preparation cycles. We outline
how squeezing and conditional displacements can be realized
on atoms confined in optical dipole traps and argue that a
sparsely filled optical lattice is a more promising candidate
than a tweezer array due to its lower anharmonicity and
better scalability under the constraints given by the goal to
create high-fidelity GKP states. To realize squeezing one can
temporarily decrease the trap depth to around 10% of its
default value. We find that with an adequate ramping speed the
squeezing can be limited to the mode in which the GKP state
is encoded, while leaving the other two vibrational modes
close to the ground state. For a conditional displacement,
an additional optical tweezer beam operating at the tune-out
wavelength can be utilized. Here we show that typical beam
intensities are more than sufficient for rapid displacements of
the required distances. All in all, we demonstrate that a state
with effective squeezings �X ≈ �Z ≈ 0.3 can be prepared in
five oscillator cycles or less and explain how error correc-
tion can be realized using the same protocol with different
parameters.

As a continuation beyond the scope of this paper, one
can analyze the effect of atom heating due to photon recoil
and trap noise and their interplay with the error correction
procedure. Furthermore, the effect of the finite GKP size �

and other experimental parameters on the GKP survival time
can be investigated. Another interesting question is whether
the trap shape of a tweezer can be optimized using spatial
light modulators in order to minimize the anharmonicity.
Moreover, one could investigate how to realize logical gate
protocols [40,80], e.g. how Rydberg-Rydberg interactions be-
tween atoms could be used to implement entangling gates
between GKP qubits. At the same time, we judge the prepa-
ration and correction protocol to be ready for experimental
realizations in state-of-the-art optical lattice setups.
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APPENDIX A: FINITE GKP STATES

An important premise is that finite GKP states |ψ�
L 〉 = 2

√
π�e−�2 â†â|ψL〉 can be interpreted as superpositions of squeezed

states. Schematically, the p̂2 part of â†â = ( p̂2 + q̂2 − 1)/2 transforms the position eigenstates into squeezed states and the q̂2

part reduces their individual contributions by a Gaussian envelope in q̂. Here we provide a derivation of Eq. (6) in the main text:

|0�
L 〉 = 2

√
π�e−�2 â†â|0L〉 ∝ e− �2

2 ( p̂2+q̂2 )
∞∑

k=−∞
|q=2k

√
π〉 =

∞∑
k=−∞

e−2π�2k2
e− �2

2 p̂2 |q=2k
√

π〉 + O(�4)

=
∫

d p
∞∑

k=−∞
e−2π�2k2

e− �2

2 p̂2 |p〉〈p|q=2k
√

π〉 + O(�4) ∝
∫

d p
∞∑

k=−∞
e−2π�2k2

e− (�p)2

2 |p〉e−2ik
√

π p + O(�4)

=
∫

d p
∞∑

k=−∞
e−2π�2k2

e−2ik
√

π p̂|p〉e− (�p)2

2 + O(�4) ∝
∫

d p
∞∑

k=−∞
e−2π�2k2

D̂(2k
√

π )|p〉〈p|Ŝ(− ln �)|0〉 + O(�4)

=
∞∑

k=−∞
e−2π�2k2

D̂(2k
√

π )Ŝ(− ln �)|0〉 + O(�4). (A1)

In the derivation we used that the momentum space wave function of the position-squeezed vacuum is a Gaussian: 〈p|Ŝ(r)|0〉 ∝
e− 1

2 ( p
er )2

, with r ∈ R [81].

APPENDIX B: PREPARED STATES AFTER UP TO THREE ROUNDS

In this Appendix we derive analytically the finite GKP states prepared with the corrective displacement scheme described
in Sec. II C and Fig. 3. To do this we make use of the braiding relation stated in Eq. (4). As short notation, the corrective dis-
placement Cξ := D̂(ξ i

√
π/2), the stabilizer Sξ := D̂(2ξ

√
π ), and the complex numbers (−1)ξ := eπ iξ are used. The derivation

only needs the braiding relation Cξ Sζ = (−1)ξζ SζCξ , so it also works with nonsquare GKP grids. The symbol ⊕ is used to
denote a mixture of operators in the sense of (Â ⊕ B̂)(ρ) := ÂρÂ† + B̂ρB̂†. One round of stabilizer application and corrective
displacement is equivalent to the application of the following channel:

C
δ
2

S
1
2 + iS

1
2

2
⊕ C− δ

2
S

1
2 − iS

1
2

2
= (−1)

δ
4 S

1
2 + i(−1)

−δ
4 S

−1
2

2
C

δ
2 ⊕ (−1)

−δ
4 S

1
2 − i(−1)

δ
4 S

−1
2

2
C

−δ
2

δ=1−−→ S
1
2 + S

−1
2

2︸ ︷︷ ︸
pair state

[
(−1)

1
4 C

1
2 ⊕ (−1)

−1
4 C

−1
2
]
. (B1)

The mixture is caused by the reset of the ancilla qubit: Just before reset, the left summand is entangled to |0〉 and the right
summand to |1〉. For δ = 1 in the first round the effective stabilizer application is independent of the ancilla state and only the
momentum shifts C are mixed. This is why the preprocedure state must be an approximate eigenstate of this operator. Combining
a second round with a different δ after δ = 1 creates the combined effective channel:

(−1)
δ
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1
2 + i(−1)

−δ
4 S

−1
2

2
C

δ
2
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S
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−1
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−δ
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1
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δ
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−1
2

2
C

−δ
2

from round 1︷ ︸︸ ︷
S

1
2 + S

−1
2
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δ
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2 + i(−1)
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−1
2
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δ
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−1
2
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δ
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δ
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−1
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−δ
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δ
4 S

−1
2

2
C

−δ
2
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δ
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−δ
2 S−1

4
C

δ
2 ⊕ (−1)

−δ
2 S1 + (1 − i) − i(−1)

δ
2 S−1

4
C

−δ
2

δ= 1
2−−→ S + √

2 + S−1
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×
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1
4 C

1
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−1
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−1
4

]
. (B2)
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For δ = 1
2 after δ = 1 the effective stabilizer application again decouples from the ancilla qubit. The new mixture of C combines

with the one from the first round to a stronger disturbance of the initial state. The third round can be treated similarly:

(−1)
δ
4 S

1
2 + i(−1)

−δ
4 S

−1
2

2
C

δ
2

from round 2︷ ︸︸ ︷
S1 + √

2 + S−1

4
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−δ
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1
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δ
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2

2
C
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2
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4
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δ
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1
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−δ
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−1
2

2
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δ
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−δ
2 S−1

4
C

δ
2 ⊕ (−1)

−δ
4 S

1
2 − i(−1)

δ
4 S

−1
2

2

× (−1)
−δ
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2 + (−1)
δ
2 S−1

4
C

−δ
2

= (−1)
3
4 δS

3
2 + (i + √

2)(−1)
1
4 δS
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√
2)(−1)

−1
4 δS
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2

8
C
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3
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2)(−1)
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√
2)(−1)

1
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2 − i(−1)

3
4 δS

−3
2

8
C
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2
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1
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√
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−1
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2

8
C
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6
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−1
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2)(−1)
−1
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1
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√
2)(−1)

1
12 S
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2 − i(−1)

1
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2

8︸ ︷︷ ︸
superposition of four states, mixed with a similar superposition above

C
−1
6 . (B3)

From the third round on, the stabilizer application does not decouple from the ancilla for any δ, so another property has to
optimized, for example the expected stabilizer value of the prepared state.

APPENDIX C: OPTICAL DIPOLE TRAPS

Here, for completeness, we review very briefly a general
model for optical dipole traps [51,52], resulting in a potential
that is proportional to the local laser light intensity. To de-
scribe the atom-light interaction, a classical wave description
of the light is chosen and combined with an electronic two-
level system. This two-level system should not be confused
with the electronic ancilla qubit. Both |0〉 and |1〉 of the
ancilla independently couple to different additional states. The
two-level system with energy spacing h̄ωe can be transformed
into a rotating frame of the light frequency ωL such that after
performing a rotating wave approximation the Hamiltonian
reads

Ĥtrap/h̄ = δ

2
σ̂z + �

2
σ̂x, (C1)

where δ = ωe − ωL is the detuning and � = �μ · �E/h̄ is the
Rabi frequency, which is proportional to the transition dipole
moment �μ and the electric-field amplitude �E , and which is
assumed to be real and positive here [55]. For δ � �, which
is called the far-detuned regime, one can treat the σ̂x part as a
perturbation to the σ̂z eigenstates. According to second-order
perturbation theory, the perturbed ground-state eigenenergy in
the rotating frame [82] is

E0 ≈ − δ

2
− �2

4δ
. (C2)

For a fixed laser wavelength and thus detuning δ, the decrease
in energy is linear in the light intensity I ∝ | �E |2 ∝ �2. Un-
der the assumption that the electronic dynamics are much
faster than the atom’s motion, this intensity-dependent energy
acts as a potential U (x) = −�(x)2/(4δ) ∝ −I (x). Since the

potential depends on the detuning δ and the dipole moment
�μ of a specific transition, the potential which an atom experi-
ences in general depends on its electronic state.

APPENDIX D: SQUEEZING AND DISPLACEMENTS
IN OPTICAL DIPOLE TRAPS

In this Appendix we derive the unitary operations that real-
ize squeezing and conditional displacements of the harmonic
oscillator states of an atom in an optical dipole trap.

1. Squeezing

The protocol shown in Fig. 4 realizes a unitary evolution
that consists of a π/2 rotation in phase space followed by a
squeezing in p̂:

V̂ = Ŝ(−ln(ω/ω′)) e−i π
2 â†â. (D1)

The operation takes the time T = π
2ω′ . Note that any idling

oscillator will keep rotating at frequency ω during this time.
This means that a phase difference of π

2 ( ω
ω′ − 1) will build up

between an oscillator following the described protocol and an
idling oscillator. For general durations T , a weaker squeezing
is applied along a different axis, as can be seen in the fol-
lowing. The Hamiltonian Ĥ = h̄ωâ†â is changed diabatically
to Ĥ ′ = h̄ωâ†â + 1

2 m(ω′2 − ω2)x̂2 = h̄ωâ†â + h̄ ω′2−ω2

2ω
q̂2. It

can be expressed in terms of adjusted creation and an-
nihilation operators: H ′ = h̄ω′b̂†b̂, where b̂ = cosh(r)â −
sinh(r)â† = Ŝ†(r)âŜ(r) with the rapidity r = 1

2 ln(ω/ω′) and
the temporary frequency ω′. Letting the system evolve un-
der this Hamiltonian for a time T realizes the unitary
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FIG. 8. Squeezing by fast modulation of the trap depth. The motional state of an atom in an optical dipole trap that we model as a harmonic
oscillator can be squeezed by a sudden change of the trap depth U and thus a change of the oscillator frequency ω ∝ √

U . (a) We consider
linear ramps from the initial trap depth U0 down to U0/10. The time scale on which the potential changes is described by the ramp parameter
d . (b) Effect of the squeezing procedure on the motional state |ψz〉 in the coding mode with frequency ωz. The instantaneous ramp protocol
yields a state |ζ 〉 := Ŝ[− ln(10)/2]|0〉 that has an effective squeezing �X = 1/

√
10 ≈ 0.316. The longer we choose the ramp time, the less

squeezed is the resulting state. (c) Effect of the squeezing procedure on the motional state |ψx〉 in the spectator mode with frequency ωx . For
larger ramp parameters d as well as for larger oscillator frequency ratios ωx/ωz the pulse appears more “adiabatic” and the final state remains
closer to the ground state.

operation

V̂ (T ) = e−iω′T b̂†b̂

= e−iω′T Ŝ†(r)â†âŜ(r)

= Ŝ†(r)e−iω′T â†âŜ(r)

= Ŝ†(r)e−iω′T â†âŜ(r)eiω′T â†âe−iω′T â†â

= Ŝ†(r)e
r
2 (e2iω′T â2−e−2iω′T â†2 )e−iω′T â†â

= Ŝ†(r)Ŝ(re−2iω′T )e−iω′T â†â

= Ŝ(−r)Ŝ(re−2iω′T )e−iω′T â†â. (D2)

If the two subsequent squeeze operations act along the same
axis in phase space, i.e. if T = π

2ω′ =: T0, one achieves the
maximal possible squeezing, arriving at Eq. (D1).

Squeezing by fast modulation of the trap depth

As described in Sec. III of the main text, the frequency ω

of an atom in an optical dipole trap, which we describe as a
harmonic oscillator, relates to the trap depth U as ω ∝ √

U .
The motional state of the atom can thus be squeezed by a sud-
den change of the trap depth. An instantaneous change of the
trap depth from U0 to U ′

0 yields a squeezing by − 1
2 ln(U0/U ′

0)
in a time T0 = π/(2ω′), as described above. The trapped
atom exhibits three vibrational modes; however, we wish to
squeeze just the motional state in encoded in the z mode.
The spectator modes x and y shall remain in their ground
states. In order to do so, one can ramp the trap depth at a
speed that is fast compared to ωz but slow in comparison with
ωx = ωy. Here we consider, for simplicity, linear ramps from
the initial trap depth U0 down to U ′

0 = U0/10. We describe
the ramp speed with a parameter d defined such that the ramp
takes a time d T0, as shown in Fig. 8(a). We remain in the
adjusted oscillator frame for a time (1 − d )T0, which turns
out to give good squeezing results. Eventually, the initial trap
depth is restored by another linear ramp analogous to the
one decreasing the trap depth. Figure 8(b) shows the effect

of the ramp duration on the motional state in the z mode
starting in the ground state. The instantaneous ramp yields the
state |ζ 〉 := Ŝ(− ln(10)/2)|0〉 that has an effective squeezing
�X = 1/

√
10 ≈ 0.316. As expected, the resulting state |ψz〉

has smaller overlap with |ζ 〉 and larger effective squeezing
�X the larger we choose the ramp parameter d . Note that for
d �= 0 the squeezing axis of the final state is not parallel to the
quadrature q axis; however, including an appropriate idling
time after the pulse will yield a momentum-squeezed state.
Figure 8(c) displays the effect of the ramp duration d and
the effect of the ratio of oscillator frequencies ωx/ωz on the
motional state in the spectator mode x. The color indicates the
fidelity of the resulting state |ψx〉 with respect to the initial
ground state |0〉. For larger ramp parameters d as well as
for larger ratios of the oscillator frequencies ωx/ωz the ramp
time d T0 gets larger as compared to the oscillator period
2π/ωx. Therefore, the pulse appears more “adiabatic” and the
resulting state remains closer to the ground state. Moreover,
we see that for even values of ωx/ωz the state can be kept in
the ground state even at small values of d .

2. Displacement

The Hamiltonian of a harmonic oscillator with an addi-
tional force term reads

H ′ = P̂2
x

2m
+ 1

2
mω2x̂2 − f x̂. (D3)

In terms of the quadrature operators this can be written as

H ′ = 1

2
h̄ω( p̂2 + (q̂ − αd )2) − 1

2
α2

d h̄ω, (D4)

with αd = f /
√

h̄mω3. We see that the harmonic oscillator is
displaced by αd in phase space, or by d = √

h̄/(mω)αd =
f /(mω2) in real space. It also experiences an energy shift by
− 1

2α2
d h̄ω which manifests as a global phase when applied un-

conditionally and causes a phase feedback if the displacement
is conditioned on another qubit. Thus, the Hamiltonian tem-
porarily changes from Ĥ = h̄ωâ†â to Ĥ ′ = h̄ωâ†â − f x̂ =
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h̄ωb̂†b̂ − 1
2α2

d h̄ω with b̂ = â − αd/
√

2 = D̂†(−αd )âD̂(−αd ).
The evolution under this Hamiltonian for a time t reduces to a
combined rotation and displacement (see Fig. 5):

Û (t ) = e−iωt b̂† b̂+ i
2 α2

d ωt

= e−iωt D̂†(−αd )â†âD̂(−αd )+ i
2 α2

d ωt

= D̂†(−αd )e−iωt â†â+ i
2 α2

d ωt D̂(−αd )

= D̂(αd )e−iωt â†âD̂(−αd )eiωt â†âe−iωt â†âe
i
2 α2

d ωt

= D̂(αd )D̂(−αd e−iωt )e−iωt â†âe
i
2 α2

d ωt

= D̂[αd (1 − e−iωt )]e−iωt â†âe
i
2 α2

d ωt− i
2 α2

d sin(ωt ), (D5)

where we used that e−iωt â†ââeiωt â†â = eiωt â and D̂(α)D̂(β ) =
e−iA(α,β )/2D̂(α + β ) with A(α, β ) = Re(α)Im(β ) −
Im(α)Re(β ). One can achieve an effective displacement
in p̂ by letting the oscillator idle for a time π

ω
− t

2 , then

applying the unitary Û (t ) and letting the oscillator idle again
for a time π

ω
− t

2 . The whole procedure then takes a single
oscillator period and realizes the evolution

e−i(π−ωt/2)â† âÛ (t )e−i(π−ωt/2)â† â

= e−i(π−ωt/2)â† âD̂(αd )e−iωt â†â+ i
2 α2

d ωt D̂(−αd )e−i(π−ωt/2)â† â

= e−iπ â† âD̂(αd eiωt/2)D̂(−αd e−iωt/2)e−iπ â†âe
i
2 α2

d ωt

= e−iπ â† âD̂[2iαd sin(ωt/2)]e− i
2 α2

d sin(ωt )e−iπ â† âe
i
2 α2

d ωt

= D̂[−2iαd sin (ωt/2)]e
i
2 α2

d [ωt−sin(ωt )]. (D6)

Since the protocol takes a complete oscillator period, no
phase-space rotation compared to an idling oscillator builds
up. Only the phase θ (t ) = 1

2α2
d [ωt − sin(ωt )] remains as an

artifact on a conditioning qubit and can be corrected by a
qubit-only rotation, since it does not depend on the bosonic
state.

APPENDIX E: POTENTIALS OF THE OPTICAL TWEEZER AND OPTICAL LATTICE

In this Appendix we state the functional forms of the optical tweezer and optical lattice potentials that have been used in the
main text. Moreover, we derive the oscillator frequencies, anharmonicities, and couplings resulting from these potentials.

1. Optical tweezer

An optical tweezer is formed from a tightly focused laser beam. Under the paraxial approximation, the intensity of a TEM00

mode of such a laser beam is described as follows [66]:

I (x, y, z) = I0
1

1 + z2

z2
R

exp

(
− 2

x2 + y2

w2
0

(
1 + z2

z2
R

))
, (E1)

where I0 is the peak intensity, w0 is the beam width, and zR = πw2
0/λ is the Rayleigh length. A real laser, which does not have

a pure TEM00 mode, has a higher beam divergence, which corresponds to a lower value of zR. The tweezers considered in this
paper reach the limits of the validity of the paraxial approximation, since zR �� w0. Nonetheless, the Gaussian beam is considered
a good estimate to extract the oscillator frequencies, anharmonicities, and couplings. Since the ac-Stark potential is proportional
to the beam intensity, U (x, y, z) = −U0I (x, y, z)/I0, the potential energy up to fourth order in the position coordinates reads as
follows:

U (x, y, z) = U0

(
− 1 + z2

z2
R

+ 2(x2 + y2)

w2
0

− z4

z4
R

− 2(x4 + y4)

w4
0

− 4z2(x2 + y2)

z2
Rw2

0

− 4x2y2

w4
0

)
+ O[(x2, y2, z2)3]. (E2)

Identifying the coefficients in front of the harmonic terms x2, y2, and z2 with 1
2 mω2

x,y,z yields the following relations for the
oscillator frequencies:

ω2
z = 2U0

mz2
R

, ω2
x = ω2

y = 4U0

mw2
0

. (E3)

Using these expressions, we can write Eq. (E2) as follows:

U = −U0 + m

2

[
ω2

z z2 + ω2
x (x2 + y2)

] − m2

U0

(
ω4

z

4
z4 + ω4

x

8
(x4 + y4) + ω2

z ω
2
x

2
z2(x2 + y2) + ω4

x

4
x2y2

)
+ O[(x2, y2, z2)3]. (E4)

Changing from real-space positions to quadratures qj = j
√

mω j/h̄, for j ∈ {x, y, z} we arrive at
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Comparing this equation with
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we can identify the anharmonicities and couplings

ηz = h̄ωz

4U0
, ηx = h̄ωx

8U0
, εzx = h̄ωx

2U0
, εxy = h̄ωx

4U0
. (E7)

2. 2D optical lattice

The 2D cross section of a rectangular folded optical lattice can be described as follows, assuming infinitely wide beams
[65,83]:

I (x, y)= I0
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λ
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.

(E8)
The angle � can be adjusted to change the lattice geometry, e.g. for � = 45◦ one obtains a square lattice. The intensity dropoff
from finitely wide beams can be modeled by a Gaussian envelope in the z direction. The beam width in the x and y directions
can be made much larger than the lattice sites, such that this intensity dropoff can be neglected for an individual central lattice
site but has to be reconsidered when using very large lattices. For � = 45◦ the potential reads

U (x, y, z) = − U0

8
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where U0 is the trap depth. The oscillator parameters can be obtained analogously to the tweezer analysis in the previous
subsection. Identifying the coefficients in front of the harmonic terms x2, y2, and z2 with 1

2 mω2
x,y,z yields the following relations

for the oscillator frequencies:

ω2
z = 4U0
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mλ2
. (E10)

Using these expressions, we can write Eq. (E9) as follows:
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Changing from real-space positions to quadratures qj = j
√

mω j/h̄ for j ∈ {x, y, z} we arrive at
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Comparing this equation with
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we can identify the anharmonicities and couplings

ηz = h̄ωz

8U0
, ηx = h̄ωx

12U0
, εzx = h̄ωx

4U0
, εxy = h̄ωx

4U0
. (E14)
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