| Hauptseite > Publikationsdatenbank > Pitfalls in using ML to predict cognitive function performance > print |
| 001 | 1047524 | ||
| 005 | 20251107202105.0 | ||
| 024 | 7 | _ | |a 10.1038/s41598-025-24325-9 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04364 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04364 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Kuhles, Gianna |0 P:(DE-Juel1)187476 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Pitfalls in using ML to predict cognitive function performance |
| 260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1762517970_3373 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a This study was supported by the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2–1, EI 816/16 − 1 and EI 816/21 − 1), the National Institute of Mental Health (R01-MH074457), the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain”, the Virtual Brain Cloud (EU H2020, no. 826421) & the National Institute on Aging (R01AG067103). |
| 520 | _ | _ | |a Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls that need to be considered during their implementation and interpretation of the results. Hence, the present study aimed at drawing attention to the risks of erroneous conclusions incurred by confounding variables illustrated by a case example predicting executive function (EF) performance by prosodic features. Healthy participants (n = 231) performed speech tasks and EF tests. From 264 prosodic features, we predicted EF performance using 66 variables, controlling for confounding effects of age, sex, and education. A reasonable prediction performance was apparently achieved for EF variables of the Trail Making Test. However, in-depth analyses revealed indications of confound leakage, leading to inflated prediction accuracies, due to a strong relationship between confounds and targets. These findings highlight the need to control confounding variables in ML pipelines and caution against potential pitfalls in ML predictions. |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 650 | 2 | 7 | |a Medicine |0 V:(DE-MLZ)SciArea-190 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
| 700 | 1 | _ | |a Hamdan, Sami |0 P:(DE-Juel1)184874 |b 1 |
| 700 | 1 | _ | |a Heim, Stefan |0 P:(DE-Juel1)131644 |b 2 |
| 700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 3 |
| 700 | 1 | _ | |a Patil, Kaustubh R. |0 P:(DE-Juel1)172843 |b 4 |
| 700 | 1 | _ | |a Camilleri, Julia A. |0 P:(DE-Juel1)172024 |b 5 |e Last author |
| 700 | 1 | _ | |a Weis, Susanne |0 P:(DE-Juel1)172811 |b 6 |e Last author |
| 773 | _ | _ | |a 10.1038/s41598-025-24325-9 |g Vol. 15, no. 1, p. 37747 |0 PERI:(DE-600)2615211-3 |n 1 |p 37747 |t Scientific reports |v 15 |y 2025 |x 2045-2322 |
| 856 | 4 | _ | |u https://www.nature.com/articles/s41598-025-24325-9?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20251029&utm_content=10.1038/s41598-025-24325-9#Sec11 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1047524/files/Pitfalls%20in%20using%20ML%20to%20predict%20cognitive%20function%20performance.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047524 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187476 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131644 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131678 |
| 910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)131678 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172843 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172024 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)172811 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 1 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|