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Motivation
Data processed by the brain is typically sequential:
• Sensory inputs (visual, auditory, somatosensory, . . . )
• Motor activity
• Language comprehension and production
• High-level cognitive processes such as planning, math, problem solving, . . .

Sequence processing:
• Prediction of upcoming events in a context-dependent manner
• Anomaly detection
• Replay of sequences in response to a cue signal (pattern completion)
• Chunking, merging, classification, etc.

  

  

Whiteside et al. (2013); Zhou et al. (2022); wikipedia: Fixation [visual]; Bouhadjar et al. (2022) [1]

Network model
Task

Bouhadjar et al. (2022) [1]
Network model

• Sparsely, randomly connected network of
excitatory and inhibitory leaky integrate-
and-fire neurons

• Stimulation of excitatory neurons accord-
ing to stimulus preference

• Nonlinear integration of synaptic inputs in
excitatory neurons (dendritic action po-
tentials)

• Unsupervised learning of sequences by
structural spike-time dependent plasticity

• Formation of sequence-specific subnet-
works
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Sequence prediction

• No predictions yet → Non-sparse activa-
tion

• Predictions → Sparse activation
• Context specificity

Neuromorphic hardware implementations
• Memristive hardware [2, 3]: robustness and energy efficiency
• BrainScales [4]: robustness and exploitation of substrate heterogeneity

Results
Learning Dynamics

0 100

epoch n

0.0

0.5

1.0

er
ro

r
ra

te

ε

fp

fn

0 500

epoch n

A B

Learning progress for sequences of length C = 20 (A) and C =
60 (B). Hyperparameters optimized for Copt = 40.

Phases of learning:
1. All connections are imma-

ture, no predictions
2. First sparse activations, not

yet coordinated across net-
work
• Alternating sparse and

non-sparse activity
3. Coordinated, sparse and

context-specific activity

▶ Forming accurate, context-sensitive sequence representations requires multiple phases
of refinement

▶ Most time spent on reducing false predictions

Prediction performance and learning speed
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Prediction performance (A, B) and learning speed (C, D) over
sequence length. Plasticity parameters optimized for sequence
lengths 20 (A, C) and 40 (B, D).

▶ Successful learning of se-
quences with tens of ele-
ments

▶ Hyperparameter transfer

▶ High performance for se-
quences with C < Copt

▶ Supralinear increase of time
to solution with sequence
length

Outlook
How can we speed up the learning process?
• Accelerated neuromorphic hardware (e.g., BrainScales [4])
• Exploiting structure in training data through hierarchical computation
• Insight into learning dynamics and revision of plasticity rules

Further goals: memory consolidation; multi-modality
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