Unsupervised online learning of complex
sequences in spiking neuronal networks
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Motivation

Data processed by the brain is typically sequential:

= Sensory inputs (visual, auditory, somatosensory, . ..)

Micro-saccadic
/7 movements

= Motor activity

Large—saccudic

" movements

» Language comprehension and production

= High-level cognitive processes such as planning, math, problem solving, ...

Sequence processing:

= Prediction of upcoming events in a context-dependent manner

= Anomaly detection

{A,D,B,E} S { RS | 1,2,3,4’..4.}

Whiteside et al. (2013); Zhou et al. (2022); wikipedia: Fixation [visual|; Bouhadjar et al. (2022) [1]

= Replay of sequences in response to a cue signal (pattern completion)

= Chunking, merging, classification, etc.
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Neuromorphic hardware implementations
= Memristive hardware [2, 3|: robustness and energy efficiency O | "
= BrainScales [4]: robustness and exploitation of substrate heterogeneity utioo
How can we speed up the learning process?
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= [nsight into learning dynamics and revision of plasticity rules
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Further goals: memory consolidation; multi-modality
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