001     1047536
005     20251111202159.0
024 7 _ |a 10.34734/FZJ-2025-04366
|2 datacite_doi
037 _ _ |a FZJ-2025-04366
041 _ _ |a English
100 1 _ |a Lober, Melissa
|0 P:(DE-Juel1)190224
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Bernstein Conference
|c Frankfurt
|d 2025-09-29 - 2025-10-02
|w Germany
245 _ _ |a Learning sequence timing and controlling recall speed in networks of spiking neurons
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1762849399_2324
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Processing sequential inputs is a fundamental aspect of brain function, underlying tasks such as sensory perception, reading, and mathematical reasoning. At the core of the cortical algorithm, sequence processing involves learning the order and timing of elements, predicting future events, detecting unexpected deviations, and recalling learned sequences. The spiking Temporal Memory (sTM) model (Bouhadjar, 2022), a biologically inspired spiking neuronal network, provides a framework for key aspects of sequence processing. In its original version, however, it can not learn the timing of sequence elements. Further, it remains an open question how the speed of sequential recall can be flexibly modulated. We propose a mechanism in which the duration of sequence elements is represented by repeated activations of element specific neuronal populations. The sTM model can thereby represent even long time intervals, providing a biologically plausible basis for learning and recalling not only the order of sequence elements, but also complex rhythms. Additionally, we demonstrate that oscillatory background inputs can serve as a clock signal and thereby provide a robust mechanism for controlling the speed of sequence recall. Modulation of oscillation frequency and amplitude enable a stable recall across a wide range of speeds,offering a biologically relevant strategy for flexible temporal adaptation. Our findings suggest that time is encoded by unique and sparse spatio-temporal patterns of neural activity, and that the speed of sequence recall during wakefulness and sleep is correlated to the characteristics of global oscillatory activity, as observed in EEG or LFP recordings. In summary, our results contribute to the understanding of sequence processing and time representation in the brain.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)
|0 G:(DE-Juel-1)ZT-I-PF-3-026
|c ZT-I-PF-3-026
|x 2
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 3
536 _ _ |a HiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)
|0 G:(DE-Juel-1)HiRSE_PS-20220812
|c HiRSE_PS-20220812
|x 4
700 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 1
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 2
|u fzj
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1047536/files/tm_timing_poster_Bernstein_2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047536
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190224
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145211
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21