001047546 001__ 1047546
001047546 005__ 20251113202120.0
001047546 0247_ $$2doi$$a10.1021/acs.jpcb.5c05390
001047546 0247_ $$2ISSN$$a1520-6106
001047546 0247_ $$2ISSN$$a1520-5207
001047546 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04372
001047546 037__ $$aFZJ-2025-04372
001047546 082__ $$a530
001047546 1001_ $$0P:(DE-Juel1)189064$$aSchäffler, Moritz$$b0$$ufzj
001047546 245__ $$aEnergy Landscape and Kinetic Analysis of Molecular Dynamics Simulations for Intrinsically Disordered Proteins
001047546 260__ $$aWashington, DC$$bAmerical Chemical Society$$c2025
001047546 3367_ $$2DRIVER$$aarticle
001047546 3367_ $$2DataCite$$aOutput Types/Journal article
001047546 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763034466_6792
001047546 3367_ $$2BibTeX$$aARTICLE
001047546 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047546 3367_ $$00$$2EndNote$$aJournal Article
001047546 520__ $$aUnderstanding the conformational dynamics of biomolecules requires methods that go beyond structural sampling and provide a quantitative description of thermodynamics and kinetics. For intrinsically disordered proteins (IDPs), energy landscape characterization is particularly crucial to unravel their complex conformational behavior. Here, we present a comprehensive protocol for analyzing molecular dynamics (MD) simulations in terms of energy landscapes, metastable states, and transition pathways. Our approach is based on the distribution of reciprocal interatomic distances (DRID) for dimensionality reduction, followed by clustering and kinetic modeling. Free energy surfaces and transition state barriers are computed directly from the simulation data and visualized using disconnectivity graphs. The method integrates two Python packages, DRIDmetric and freenet, with standard energy landscape tools based on kinetic transition networks, including PATHSAMPLE and disconnectionDPS. We demonstrate this workflow for simulations of the intrinsically disordered, aggregation-prone Alzheimer’s amyloid-β peptide in physiologically relevant environments. This modular framework offers a robust and interpretable way to extract thermodynamic and kinetic insights from MD data and is especially valuable for characterizing the diverse conformational states of IDPs.
001047546 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001047546 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047546 7001_ $$00000-0002-3555-6645$$aWales, David J.$$b1
001047546 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author
001047546 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.5c05390$$gp. acs.jpcb.5c05390$$n44$$p11430-11440$$tThe journal of physical chemistry / B$$v129$$x1520-6106$$y2025
001047546 8564_ $$uhttps://juser.fz-juelich.de/record/1047546/files/energy-landscape-and-kinetic-analysis-of-molecular-dynamics-simulations-for-intrinsically-disordered-proteins.pdf$$yOpenAccess
001047546 8767_ $$d2025-11-03$$eHybrid-OA$$jPublish and Read
001047546 909CO $$ooai:juser.fz-juelich.de:1047546$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001047546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189064$$aForschungszentrum Jülich$$b0$$kFZJ
001047546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
001047546 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001047546 9141_ $$y2025
001047546 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001047546 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001047546 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001047546 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047546 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047546 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2022$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001047546 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001047546 920__ $$lyes
001047546 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001047546 980__ $$ajournal
001047546 980__ $$aVDB
001047546 980__ $$aUNRESTRICTED
001047546 980__ $$aI:(DE-Juel1)IBI-7-20200312
001047546 980__ $$aAPC
001047546 9801_ $$aAPC
001047546 9801_ $$aFullTexts