001     1047546
005     20251113202120.0
024 7 _ |a 10.1021/acs.jpcb.5c05390
|2 doi
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04372
|2 datacite_doi
037 _ _ |a FZJ-2025-04372
082 _ _ |a 530
100 1 _ |a Schäffler, Moritz
|0 P:(DE-Juel1)189064
|b 0
|u fzj
245 _ _ |a Energy Landscape and Kinetic Analysis of Molecular Dynamics Simulations for Intrinsically Disordered Proteins
260 _ _ |a Washington, DC
|c 2025
|b Americal Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763034466_6792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the conformational dynamics of biomolecules requires methods that go beyond structural sampling and provide a quantitative description of thermodynamics and kinetics. For intrinsically disordered proteins (IDPs), energy landscape characterization is particularly crucial to unravel their complex conformational behavior. Here, we present a comprehensive protocol for analyzing molecular dynamics (MD) simulations in terms of energy landscapes, metastable states, and transition pathways. Our approach is based on the distribution of reciprocal interatomic distances (DRID) for dimensionality reduction, followed by clustering and kinetic modeling. Free energy surfaces and transition state barriers are computed directly from the simulation data and visualized using disconnectivity graphs. The method integrates two Python packages, DRIDmetric and freenet, with standard energy landscape tools based on kinetic transition networks, including PATHSAMPLE and disconnectionDPS. We demonstrate this workflow for simulations of the intrinsically disordered, aggregation-prone Alzheimer’s amyloid-β peptide in physiologically relevant environments. This modular framework offers a robust and interpretable way to extract thermodynamic and kinetic insights from MD data and is especially valuable for characterizing the diverse conformational states of IDPs.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wales, David J.
|0 0000-0002-3555-6645
|b 1
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 2
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.5c05390
|g p. acs.jpcb.5c05390
|0 PERI:(DE-600)2006039-7
|n 44
|p 11430-11440
|t The journal of physical chemistry / B
|v 129
|y 2025
|x 1520-6106
856 4 _ |u https://juser.fz-juelich.de/record/1047546/files/energy-landscape-and-kinetic-analysis-of-molecular-dynamics-simulations-for-intrinsically-disordered-proteins.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047546
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)189064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21