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ABSTRACT: Understanding the conformational dynamics of
biomolecules requires methods that go beyond structural sampling
and provide a quantitative description of thermodynamics and
kinetics. For intrinsically disordered proteins (IDPs), energy
landscape characterization is particularly crucial to unravel their
complex conformational behavior. Here, we present a compre-
hensive protocol for analyzing molecular dynamics (MD)
simulations in terms of energy landscapes, metastable states, and
transition pathways. Our approach is based on the distribution of
reciprocal interatomic distances (DRID) for dimensionality
reduction, followed by clustering and kinetic modeling. Free
energy surfaces and transition state barriers are computed directly
from the simulation data and visualized using disconnectivity
graphs. The method integrates two Python packages, DRIDmetric and freenet, with standard energy landscape tools based on
kinetic transition networks, including PATHSAMPLE and disconnectionDPS. We demonstrate this workflow for simulations
of the intrinsically disordered, aggregation-prone Alzheimer’s amyloid-β peptide in physiologically relevant environments. This
modular framework offers a robust and interpretable way to extract thermodynamic and kinetic insights from MD data and is
especially valuable for characterizing the diverse conformational states of IDPs.

1. INTRODUCTION
Molecular dynamics (MD) simulations provide a powerful
framework for exploring the structural and kinetic landscapes of
protein conformational transitions. In particular, the concept of
an energy landscape, mapping conformational states to their
corresponding free energies, has proved essential for elucidating
folding, misfolding, and self-assembly processes in both folded
and intrinsically disordered proteins (IDPs).1 The amyloid-β
(Aβ) peptide, a central player in the pathology of Alzheimer’s
disease, represents a prototypical system for probing transitions
between disordered and ordered states that drive toxic oligomer
formation.2,3

In recent work by Schaf̈fler et al.,4 the energy landscape of
Aβ42, the Aβ variant with 42 amino acid residues, was
characterized in detail using extensive MD simulations and
structural clustering based on the distribution of reciprocal
interatomic distances (DRID) metric. For the Aβ42 monomer,
the landscape revealed a “structurally inverted funnel”, with
disordered conformations occupying the global minimum.
Upon dimerization, the landscape shifts to a more standard
folding funnel culminating in β-hairpin formation. Using
disconnectivity graphs5,6 and first-passage time (FPT) analysis,7

we identified distinct folding pathways and their associated time
scales, highlighting the development of a salt bridge and
cooperative binding through the formation of hydrophobic
contacts as key mechanistic events in early oligomerization.

Building on these findings, this work presents a comprehen-
sive guide to applying energy landscape theory and FPT-based
kinetic analysis to MD simulation data. We outline the
theoretical background, including: (i) DRID-based dimension-
ality reduction and clustering; (ii) free energy estimation from
state populations and transition statistics; (iii) visualization of
free energy surfaces via disconnectivity graphs; and (iv)
calculation and interpretation of FPT distributions. A
protocol-style implementation is provided to facilitate the
application of this framework to diverse systems.
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As a case study, we demonstrate the extended application of
the method to Aβ42 in contact with physiologically relevant
interaction partners. Specifically, we analyze simulations of the
Aβ42 monomer in the presence of 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) lipids and the glycosamino-
glycan (GAG) chondroitin-4-sulfate with 8 subunits, two types
of molecules known to modulate Aβ aggregation.8 For the
interactions of Aβ42 with POPC, we consider only three lipid
molecules forming a small cluster instead of larger assemblies
like a lipid bilayer, inspired by the lipid-chaperone hypothesis
that free lipids form complexes facilitating membrane insertion
of Aβ and other amyloid proteins.9 This effect is based on a
chemical equilibrium between dispersed lipids and their
assemblies, characterized by the critical micellar concentration
(CMC). Short-chain or charged lipids have CMCs in the μM
range, while long-chain lipids have nM CMCs.10,11 Since these
values resemble concentrations used in experiments and found
in vivo, it is plausible that free lipid−protein complexes can form,
influencing the structure of IDPs like Aβ42. By comparing energy
landscapes and interconversion rates across these environments
and with respect to neat solution,4 we assess how lipid and GAG
interactions reshape folding funnels and transition barriers,
providing insight into their roles in modulating the structural
preferences of Aβ42. This work thus establishes a generalizable
and robust methodology for energy landscape-based analysis of
biomolecular folding and assembly, extending its applicability to
simulation data across a broad range of molecular systems.

2. THEORY AND METHODS
2.1. Molecular Dynamics Simulations. The Aβ42 peptide

was modeled in all simulations with neutral histidine residues
and without terminal capping groups, resulting in a net charge of
−3. In this study, we consider two systems: Aβ42 in the presence
of a glycosaminoglycan (GAG) chain (Aβ-GAG), and Aβ42 in
the presence of three POPC lipids (Aβ-POPC). These
simulations were originally performed in the context of separate
studies,12,13 and are employed here to test the unified energy
landscape framework. Despite minor differences in simulation
protocols, all systems share the same force field, ion
concentration, and temperature, so the results are directly
comparable.

All simulations were carried out using GROMACS 2018.14

The peptide was described using the CHARMM36m force
field,15 which has proved suitable for modeling both monomeric
Aβ and its aggregation behavior.16,17 POPC lipids were modeled
using the CHARMM36 force field,18 while GAGs were
parametrized using the CHARMM-GUI Glycan Reader &
Modeler module,19,20 consistent with previous studies of Aβ-
GAG interactions.21

System preparation followed a standardized protocol: solutes
were placed in a rectangular simulation box with a minimum
distance of 1.2 nm from any periodic boundary. The systems
were solvated with TIP3P water,22 and Na+ and Cl− were added
to achieve a physiological salt concentration of 150 mM while
also ensuring charge neutrality. After equilibration, production
simulations were conducted under NpT conditions at 1 bar
using the Parrinello−Rahman barostat.23 The Aβ-GAG and Aβ-
POPC systems were each simulated at 310 K using a Nose−́
Hoover thermostat.24,25 Periodic boundary conditions were
applied in all directions. Electrostatic interactions were
calculated using the particle-mesh Ewald method,26 and van
der Waals and real-space Coulomb interactions were truncated
at 1.2 nm. For integration, the leapfrog algorithm was used with

an integration time step of 2 fs.27 Total simulation times were
extended compared to earlier studies, resulting in an
accumulated simulation length of 6 μs per system. Config-
urations were saved every 20 ps for subsequent analysis. All
simulations were performed on the JURECA-DC super-
computing cluster.28

2.2. Distribution of Reciprocal Interatomic Distances
Metric. To reduce the dimensionality of the high-resolution
MD trajectories while preserving essential structural and kinetic
features, we applied the DRID metric, which transforms each
conformation into a low-dimensional structural fingerprint by
capturing local structural environments around selected
reference atoms.

To apply the DRID metric, two sets of atoms are defined: a set
of m centroids representing structurally important positions
(typically selected Cα atoms), and a set of N reference atoms ,
excluding atoms covalently bonded to the centroids. For each
centroid i , the distribution of reciprocal interatomic
distances to atoms in is computed, and the first three
moments of this distribution are used to characterize the
centroid environment. Each structure is thus represented by a
3m-dimensional feature vector composed of the following
moments
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where dij is the distance between centroid Gci and atom
aj , and nbi denotes the number of atoms covalently bonded
to centroid i. The structural dissimilarity between two
conformations j and k is then quantified by the DRID space
distance metric
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Using this distance metric, structures are grouped into discrete
states via regular space clustering in DRID space, as
implemented in the PyEMMA Python package.29 The resulting
clustering ensures that members within each state exhibit high
structural similarity, while the overall network of states retains
the slow dynamics and transition pathways of the underlying
MD trajectory. This kinetic consistency has been demonstrated
in previous applications of the DRID approach.30,31

2.3. Free Energy and Transition State Estimation. The
free energy landscape (FEL) of a molecular system encodes both
its thermodynamic stability and kinetic behavior. In the present
work, the FEL is constructed from the discrete state
representation obtained via clustering in DRID space, where
each cluster defines a minimum in the landscape. Transitions
between these minima correspond to conformational changes
observed during the MD trajectory.
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The free energy Fi of each minimum (i.e., DRID state i) is
calculated from its equilibrium occupation probability pi via the
relation

=F k T plni iB (5)

where kB is the Boltzmann constant and T the absolute
temperature. The occupation probabilities are estimated from
the relative frequencies of state visits in the MD trajectory. To
estimate the free energy barriers between states, we first
construct the rate matrix R whose off-diagonal elements rjk
correspond to the observed transition rates from state j to state k
in the state trajectory. We translate these rates into transition
state free energies using the Eyring−Polanyi formulation
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where kjk is the rate constant for the j → k transition, and h is
Planck’s constant. Ideally, the forward and backward transition
state energies should satisfy Fjk = Fkj; however, due to finite
sampling in MD simulations, this symmetry may not hold
exactly. To obtain a consistent estimate of the transition state
free energy, we average the forward and backward transition
state free energies

=
+

F
F F

2jk
jk kj

(7)

where Fjk represents the effective free energy barrier separating
states j and k.
2.4. Visualization via Disconnectivity Graphs. To

visualize the hierarchical organization of the free energy
landscape retaining all degrees of freedom, without employing
collective variables, we use disconnectivity graphs. These graphs
represent the global connectivity between free energy minima by
grouping them into superbasins according to their mutual
accessibility through transition states below specified energy
thresholds. Each local minimum, corresponding to a DRID-
defined state, is depicted as a vertical line terminating at its
respective free energy, while branches in the graph indicate a
superbasin of minima connected through low-energy transition
pathways, as shown in Figure 1. Starting from the lowest energy
state, minima are progressively grouped into superbasins at
increasing regular energy thresholds, spaced at intervals ΔF.
When two or more minima become connected via a pathway
with the highest transition state below the threshold, they are
merged into a common branch. In this way, the tree-like

structure of the disconnectivity graph reflects the topological
organization of the FEL, enabling direct identification of folding
funnels, energy barriers, and metastable basins. In this study, we
use a threshold spacing of ΔF = 0.5 kBT, which balances
structural resolution and basin grouping at physiological
temperature (310 K).

Disconnectivity graphs provide a coordinate-independent
representation of the FEL, including all degrees of freedom. For
complex biomolecular systems meaningful reaction coordinates
may be difficult to define, and we avoid projections along
predefined coordinates. The minima are positioned on the
horizontal axis so that low-lying states are placed in the middle of
local funnel structures. This choice is designed to highlight the
organization of the landscape.
2.5. First Passage Time Analysis. While the free energy

landscape governs the structural and dynamical properties of a
molecular system, experimental observables often correspond to
relaxation times associated with specific conformational
transitions. Studying the time scales of transitions between
minima on the FEL can therefore bridge the gap between
simulation and experiment and provide mechanistic insights
into the underlying processes. These time scales can be
quantified by the mean first passage time (MFPT), which is
the average time required for the system to first reach a defined
product state from a reactant state.

Beyond the MFPT, the full first passage time (FPT)
distribution offers much more detailed information about the
kinetic organization. Specifically, analysis of FPT distributions
provides access to the topological structure of the energy
landscape and enables the identification of distinct signatures
associated with relaxation to different funnels or metastable
states.7 We obtain the FPT distribution for the transition A ← B,
from the reactant state B to the product state A, by treating A as
an absorbing state, since the dynamics remain unchanged up to
the point of absorption. Let I denote the set of intervening states,
defined as I ≔ S\(B ∪ A), where S is the full state space. Pα(t)
represents the occupation probability of state α at time t. Then
the time evolution of these probabilities for states in I ∪ B is
governed by the master equation
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where KXY is the rate matrix for transitions between sets of states
X and Y, and DX is a diagonal matrix containing the total escape
rates for each state in X, i.e., [ ] =D KX ii j ji.

Solving this master equation via eigenvector decomposition
yields an analytic expression for the first passage time
distribution p(t)

=p t e A( )
l

l
t

l
l

(9)

where νl > 0 are the eigenvalues of −M, and Al are amplitudes
determined by the corresponding eigenvectors. This expression
describes the FPT as a weighted sum of exponential decay
modes.

To identify competing relaxation time scales, the distribution
is represented on a logarithmic time scale7,32,33 as y( ) with
y = ln t, yielding

Figure 1. Schematic illustration of a disconnectivity graph. The graph
(red) is constructed from a hypothetical free energy landscape (blue)
comprising local minima A−C. Each minimum is represented by a
vertical line terminating at the corresponding free energy.
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=y e A( )
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y y
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This form reveals the presence of distinct relaxation modes in
the system and allows identification of kinetic intermediates, fast
and slow pathways, and dominant transition mechanisms. Peaks
in y( ) correspond to characteristic time scales of relaxation
processes between the defined states.

FPT analysis, when combined with energy landscape models,
thus bridges thermodynamic and kinetic descriptions, enabling
quantitative assessment of transition pathways and rates.

3. PRACTICAL APPLICATIONS
The theoretical framework described above provides a powerful
approach for extracting free energy surfaces, kinetic models, and
transition pathways from full-dimensional MD simulations. In
this section, we present a practical, protocol-style example
demonstrating how to apply this methodology to simulation
data.

Our implementation combines two Python packages,
DRIDmetric and freenet, with the energy landscape
tools PATHSAMPLE34 and disconnectionDPS35 based
on analysis of kinetic transition networks. The DRIDmetric
module performs dimensionality reduction on MD trajectories
using the distribution of reciprocal interatomic distances
(DRID), enabling the construction of state models that preserve
both structural similarity and kinetic relevance. The freenet
module then carries out regular space clustering in DRID space
to identify metastable states, computes the corresponding
transition matrix, and evaluates the associated free energies of
the minima and transition states (i.e., energy barriers). The
resulting kinetic model can be passed directly to PATHSAMPLE
and disconnectionDPS to generate databases of tran-
sition pathways and construct disconnectivity graphs.

By integrating these tools, we provide a seamless analysis
workflow�from raw MD trajectories to a comprehensive
energy landscape representation, including thermodynamic
basins, kinetic barriers, and relaxation time scales. This section
outlines each step of the protocol, applying the methodology to
representative simulation data of Aβ42 in the presence of either
POPC lipids or a GAG molecule. These examples serve both as
validation and as a guide for applying the framework to other
biomolecular systems.
3.1. Installation. We recommend setting up a dedicated

virtual environment (e.g., via venv or conda) to ensure
compatibility and reproducibility of the analysis workflow. The
required Python modules DRIDmetric and freenet can
then be installed directly from their respective repositories using
the following commands:

These packages provide the core functionality for dimension-
ality reduction, clustering, transition matrix construction, and
free energy analysis. Both modules are compatible with Python
3.8 or higher and rely on standard scientific libraries, such as
numpy, scipy, MDAnalysis, and deeptime. For more
detailed installation instructions please refer to the appropriate
github pages. The PATHSAMPLE and disconnec-
tionDPS packages can be downloaded from https://www-

wales.ch.cam.ac.uk/PATHSAMPLE/ and must be compiled
locally as described at https://github.com/wales-group/
examples.
3.2. DRIDmetric. The first step in constructing a kinetic

model from MD simulation data is to reduce the dimensionality
of the trajectory while preserving key structural and dynamical
information. We use the DRIDmetric module to compute
the distribution of reciprocal interatomic distances for each
frame, resulting in a compact, low-dimensional representation of
the system in DRID space. The DRID metric is computed based
on a user-defined set of centroid atoms, which typically
represent structurally relevant residues, and a reference set
that defines the molecular environment. For the Aβ42 systems
studied here, we select six Cα atoms corresponding to residues
D1, F19, D23, K28, L34, and A42 as centroid atoms and the all
peptide atoms as reference set, following our earlier work.4 Both
selections use the syntax of MDAnalysis. Centroid selection
is performed in a molecule-specific manner, either by identifying
Cα atoms of residues directly relevant to the process under
investigation or by uniformly spacing Cα atoms along the
sequence. Although a more informed selection can improve
sensitivity, subsequent analyses, such as free energy landscape
reconstruction, have been demonstrated to be relatively robust
with respect to the precise choice of centroids.4 Here is a
minimal working example illustrating the computation of the
DRID metric:

The output is a framewise DRID representation of the
trajectory, stored as a .npy array, which serves as input for
clustering and further kinetic analysis.
3.3. State Clustering and Free Energy Surface

Construction. Following dimensionality reduction, the
trajectory in DRID space is clustered into discrete conforma-
tional states, which form the basis of the kinetic model. We use
the freenet module to perform regular space clustering,
estimate the transition matrix, and compute the free energies of
both states and transition barriers.

Given a precomputed DRID trajectory, clustering is
performed with a user-defined cutoff (typically 0.02 nm−1 for
Aβ42). The cutoff distance and the maximum number of centers
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(default: 2000) are key hyperparameters that define the
granularity of clustering, with smaller values producing a finer
partitioning of configurational space. For comparative analyses
across multiple simulations, these parameters should be kept
fixed to ensure that states of comparable entropy are identified
consistently. Nevertheless, the cutoff yielding an optimal
partitioning of the underlying FEL may be system dependent.
Practical strategies to determine a suitable value include
inspection of the ensemble of conformations grouped within a
minimum or, more systematically, imposing a maximum RMSD
criterion for structures within a single minimum. Equilibrium
state probabilities and branching probabilities between directly
connected states are then calculated, followed by the
computation of free energies using the Eyring−Polanyi
formulation. A minimal working example is shown below:

Here, the clusterStates function applies regular space
clustering in DRID space, respecting the corresponding distance
metric. In addition to generating the transition matrix, it
produces a state assignment for each frame of the trajectory (i.e.,
the “state-trj”), linking each frame to its corresponding discrete
state. It also outputs the deeptime clustering model as pickle file,
which can be used to project additional trajectories into the
same DRID-defined state space. This association enables direct
backmapping of clustered states to structural configurations in
real space, preserving interpretability of the free energy
landscape in terms of molecular structure.

This workflow yields the free energy minimia and transition
states whose configurations are saved in a format compatible
with the PATHSAMPLE and disconnectionDPS tools,
enabling subsequent pathway and landscape analysis.
3.4. Visualization of the Free Energy Landscape.

Visualization of the database of free energy minima and
transition state barriers as a disconnectivity graph is performed
using the disconnectionDPS program. When executed in
a directory containing the files min.data, ts.data, and a
configuration file named dinfo, disconnectionDPS
directly generates a graphical representation of the free energy
surface as tree.ps. A minimal example of a valid dinfo
configuration file is provided here:

Here, DELTA specifies the energy threshold spacing (ΔF, in
units of kBT). The FIRST keyword sets the upper limit of the
graph, which should be slightly higher than the highest transition
state free energy to be included. LEVELS defines the number of
energy levels to display in the disconnectivity graph. In general
LEVELS should be slightly larger than FIRST/DELTA. The
MINIMA and TS keywords specify the paths to the data files
containing the minima and transition states, respectively.
Additional keywords are available that automate some of these
choices. Optional keywords can also be used to tailor the analysis
and enhance interpretability of the FEL. For example, to identify
and label the lowest-lying minima in the landscape, the following
options may be added:

This configuration will produce a graph displaying only the 30
lowest minima, each annotated with its state ID, which is useful
for identifying the global minimum and associated side funnels.

Moreover, if the state membership of each MD frame is
known (e.g., from backmapping after DRID-based clustering),
one can associate structural or dynamic observables with each
state. These values can be visualized by color-coding the
branches of the disconnectivity graph. In the example below, the
average β-sheet content of each minimum is used as a coloring
metric (order parameter):

The file avBetaSheet.txt contains one scalar value per
line, corresponding to the average observable (here the β-sheet
content) for each minimum. Line i contains the value for
minimum ID i (note that pathsample indexing begins at 1).
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For more information on the full functionality of dis-
connectionDPS, please refer to the official documentation
at https://www-wales.ch.cam.ac.uk/disconnectionDPS.doc/.
3.5. First Passage Time Analysis Using PATHSAMPLE.

Assuming we have identified the global minimum of the free
energy landscape (denoted A) and the minimum of a side funnel
(B) based on an observable of interest, we can determine
transition rates between these two states by calculating the first
passage time (FPT) distribution using the PATHSAMPLE
program.

In addition to the required min.data and ts.data files,
PATHSAMPLE requires three files, apathdata configuration
file of directives, together with min.A and min.B files, which
define the sets of minima associated with each end point. These
files should contain the number of associated minima on the first
line, followed by the minimum IDs on subsequent lines. For
example:

A minimal pathdata configuration file for computing the
FPTs between minima A and B might look as follows:

Running PATHSAMPLE from the terminal with this setup
will compute the FPT distributions to the minima defined in
min.A and min.B. The distribution for transitions from A to
B is saved as waitlnpdfBA, while the reverse transition from
B to A is saved as waitlnpdfAB.

Additionally, including the optional keyword WAITPDF-
PRINT in the pathdata configuration file will output all
possible FPT distributions from every state in the network to the
defined target minima. The corresponding files are named
waitlnpdfB.ID and waitlnpdfA.ID, where ID refers
to the starting minimum ID. The peak values of each FPT
distribution, corresponding to the most probable transition
times, are saved in the files peaksB.ID and peaksA.ID,
respectively. Note that the FPTs are reported as natural
logarithms of time, ln(t); applying the exponential function
yields the actual time scales in units of picoseconds.

4. RESULTS
To demonstrate the utility of our methodology, we present
comparative free energy landscape analyses of Aβ42 in neat
solution, published before4 and serving as reference here, and in
complex with the GAG molecule chondroitin-4-sulfate (with 8

subunits) and a POPC cluster composed of three lipid
molecules. These evaluations highlight how our approach
resolves subtle structural differences within aggregation-prone
ensembles of Aβ42. Additionally, it enables mechanistic insights
into environment-dependent folding pathways of IDPs, using
Aβ42 as a case example. The FEL of the Aβ42 monomer in neat
solution, previously analyzed in detail,4 is briefly revisited here to
serve as a reference for comparison with the newly characterized
systems.

4.1. Free Energy Landscape of the Aβ42 Monomer.
Figure 2 shows the free energy landscape of the Aβ42 monomer,
visualized as a disconnectivity graph. These data come from a
previously published simulation4 and are revisited here to
provide a point of comparison for the newly obtained results on
Aβ42 in complex environments.

The monomer FEL exhibits a primary funnel leading to the
global minimum. In contrast to typical folded proteins, this
minimum corresponds to disordered conformations, denoted as
state D (for “disordered”). Conformations featuring partial
secondary structure, such as the β-hairpin states H and B

Figure 2. Free energy disconnectivity graph for the FEL of the Aβ42
monomer. The energies are given in units of kBT (see scale bar on the
right), with kB the Boltzmann constant and T the absolute temperature.
The branches are colored according to the average number of residues
in β-sheet conformation in the ensemble of structures belonging to the
corresponding minimum, ranging from blue (no β-sheets) to red (13
residues involved in β-sheets). Representative structures of some
minima are shown, with D (for ‘disordered’) being the global minimum
of the monomer FEL. The structures are shown in the cartoon
representation, with β-sheets highlighted in yellow and the centroids
used in the DRID metric shown as spheres (blue for positive charge at
the N-terminus and K28 side chain, red for negative charge at the C-
terminus and D23, magenta for the hydrophobic F19 and L34).
Adapted from ref 4. Available under a CC-BY 3.0 Unported license.
Copyright Moritz Schaf̈fler, David J. Wales, and Birgit Strodel, 2024.
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characteristic for Aβ oligomers36,37 (state B is the global
minimum of the dimer FEL identified in our previous work4) or
the S-shaped motif typical of fibrillar forms,38 appear as excited
states in the FEL, with free energy differences of ΔFH

mon = 2.3
kBT, ΔFB

mon = 3.6 kBT, and ΔFS
mon = 3.2 kBT, respectively. Here,

an ‘excited state’ refers to a higher energy free energy minimum.
This organization of the energy landscape, in which disordered
states reside at the bottom of the funnel, while structured
conformations occupy higher-energy regions, has been
previously referred to as an “inverted free energy landscape”.39

We suggested “structurally inverted funnel” or “disordered
funnel” to emphasize that it is the structural ordering, rather than
the topological shape of the funnel, that is inverted.

This baseline characterization of the monomer landscape
serves as a reference for assessing how environmental factors,
such as the presence of POPC lipids or GAGs, reshape the
conformational preferences and folding kinetics of Aβ42.
4.2. Free Energy Landscape of Aβ42 in the Presence of

a Glycosaminoglycan Chain. To illustrate the application of
our framework to environmental perturbations of Aβ42, we
computed the FEL of the peptide in the presence of a GAG
chain. The analysis was performed using the same DRID metric
as for the monomer, enabling direct comparison of the resulting
energy landscapes. The same DRID metric as for the monomer
in neat solution was employed to calculate the states, treating
interactions between Aβ42 and the GAG only implicitly.
Moreover, our previous study has revealed that due to minimal
contacts between Aβ42 and the GAG molecule, there is no direct
cooperative folding mechanism.12 Instead, the high negative
charge of the GAG molecule alters the Na+ distribution within
the system, leading to descreening of the intrapeptide electro-
static interactions and amplifying the hairpin-stabilizing D23−
K28 salt bridge.

Figure 3 shows the FEL of Aβ42 in complex with a GAG chain,
visualized as a disconnectivity graph. The landscape features a
dominant funnel culminating in two competing β-hairpin
structures. The global minimum, BGAG, consists of a compact
hairpin configuration stabilized by an internal D23−K28 salt
bridge and hydrophobic contacts involving the N-terminus. A
slightly higher-lying minimum (ΔFGAG = 0.2 kBT) corresponds
to a more extended hairpin conformation, which is reminiscent
of state B appearing as an excited state in the monomer FEL
(Figure 2). However, the true state B can be found as a higher-
lying excited state Aβ42-GAG FEL (ΔFB

GAG = 4.2 kBT), while the
disordered monomer minimum (state D) appears at ΔFD

GAG =
5.9 kBT, embedded within a distinct side funnel of intrinsically
disordered conformations. The presence of a defined side funnel
leading to disordered states at higher free energies suggests a
strong shift in the equilibrium ensemble of Aβ42 conformations
toward more ordered states when in the neighborhood to a GAG
molecule. The state with the highest β-sheet content, SGAG,
adopts an S-shaped conformation (ΔFS

GAG = 1.3 kBT), which has
been previously associated with fibril formation.38 Its relatively
low free energy supports the hypothesis that GAGs facilitate
structural transitions relevant to aggregation.

Taken together, the FEL analysis reveals that in the presence
of GAGs, Aβ42 preferentially adopts ordered β-hairpin
conformations, with disordered states energetically disfavored.
This supports experimental evidence that GAGs accelerate
amyloid formation40 and identifies β-hairpin motifs as potential
early stage aggregation intermediates promoted by the GAG
environment.

4.3. Free Energy Landscape of Aβ42 in the Presence of
POPC Lipids. To evaluate the influence of a lipid environment
on the conformational ensemble of Aβ42, we applied our analysis
framework to MD simulations of the peptide in complex with
three POPC lipids. The same DRID metric used before was
employed to define states, ensuring methodological consistency
across the systems. This choice implies that the interactions with
the lipid molecules are treated implicitly in the analysis via the
peptide’s conformational response to the local lipid environ-
ment.

Previous work has shown that Aβ42 undergoes a disorder-to-
order transition upon interacting with POPC lipids.13 At a 1:3
peptide-to-lipid ratio, simulations revealed competing structural
tendencies: in some cases, a stable helix-kink-helix motif formed,
while in others, β-sheet structures dominated. These transitions
were found to depend on peptide−lipid contacts, particularly
involving residues L17, A21, I32, and V36, which stabilize
specific secondary structure motifs.

Figure 4 shows the FEL of the Aβ42-POPC system visualized
as a disconnectivity graph. The landscape is characterized by a

Figure 3. Free energy disconnectivity graph for Aβ42 in the presence of
a GAG molecule. The energies are given in units of kBT (see scale bar on
the right), with k the Boltzmann constant, and T the absolute
temperature. The branches are colored according to the average
number of residues in β-sheet conformation in the ensemble of
structures belonging to the respective minimum, ranging from blue (no
β-sheets) to red (21 residues involved in β-sheets). Representative
structures of some minima are shown, where B is the global minimum of
the dimer FEL4 and D is the global minimum of the monomer FEL
projected onto the Aβ42-GAG FEL. Furthermore, the global minimum
BGAG and the state with the highest β-sheet content SGAG are
highlighted. The structures are shown in the cartoon representation,
with β-sheets highlighted in yellow and the centroids used in the DRID
metric shown as spheres (blue for positive charge at the N-terminus and
K28 side chain, red for negative charge at the C-terminus and D23,
magenta for the hydrophobic F19 and L34). The GAG molecule is not
shown as there are only transient contacts with the Aβ42 peptide.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c05390
J. Phys. Chem. B 2025, 129, 11430−11440

11436

https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig3&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c05390?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


single broad funnel with a β-sheet-rich conformation at the
global minimum (BPOPC). This structure is distinct from the
canonical β-hairpin observed in the dimer and GAG systems and
suggests an alternate aggregation-prone topology driven by lipid
interactions. The FEL is notably flatter than those observed for
the other systems, as evidenced by the relatively small free
energy differences between key states. Projection of the
disordered monomer state (D) onto the POPC FEL reveals
that it appears as a moderately high-energy local minimum
(‘excited state’) with ΔFD

POPC = 3.0 kBT, lower than its energetic
offset in the dimer and GAG systems. This result reflects the
flatter shape of the POPC landscape and suggests that
disordered states remain accessible. Interestingly, the β-hairpin
state B from the dimer FEL lies only ΔFB

POPC = 0.1 kBT above the
global minimum, indicating a high likelihood of formation.
While previous studies observed a general β-sheet propensity of
Aβ in the presence of lipid membranes,41 the specific hairpin
topology had not been clearly resolved as a dominant structure.
The low relative free energy identified here suggests, not only
stability, but also kinetic accessibility in the presence of POPC.

Additionally, we identify a state with the highest α-helical
content (SA), corresponding to the helix-kink-helix motif
described in detail by Fatafta et al.13 and agreeing with structures

found from NMR spectroscopy experiments of the micelle-
bound Aβ peptide42−46 This helical structure appears at ΔFA

POPC

= 1.0 kBT, considerably lower than analogous α-helical
conformations in the monomer and GAG systems, where helix
formation is rare. The presence of such a low-energy helical state
highlights the environment-specific modulation of the Aβ42
conformational ensemble by lipid interactions and reinforces
the notion that POPC can stabilize distinct structural motifs.

In summary, the Aβ42-POPC FEL reveals a relatively flat
landscape with multiple competing ordered states, including
both β-sheet and α-helical motifs. The accessibility of these
states underscores the conformational flexibility of Aβ42 in lipid-
rich environments and supports the role of specific peptide−
lipid contacts in guiding structural transitions relevant to early
aggregation.
4.4. Time Scale Analysis from First Passage Time

Distributions. To complement the structural characterization
of the FEL, we analyzed the kinetics of state interconversion
using FPT distributions calculated with PATHSAMPLE.
Specifically, we focused on transitions between the disordered
state (D) and the recurring β-hairpin state (B). For the Aβ42-
GAG and Aβ42-POPC systems, we additionally analyzed the
transitions to and from the respective global minima of their free
energy landscapes. The resulting FPT distributions for the three
systems under study are shown in Figure 5.

In the monomer, the FPT distributions feature well-defined
peaks for transitions between D and B at time scales
corresponding to 15 nsD B

mon and 3 nsB D
mon . Although

the forward transition is five times slower than the reverse, both
are relatively fast, indicating a shallow FEL with low kinetic
barriers between states. In contrast, Aβ42-GAG exhibits a
pronounced separation of time scales. Here, the transition times
are 32 nsD B

GAG and 2800 nsB D
GAG . This clear imbalance

indicates that once the system reaches state B, return to the
disordered basin is highly unlikely on accessible MD time scales.
Notably, the transition to the global minimum of the Aβ42-GAG
FEL, a structurally distinct β-hairpin (BGAG), occurs even faster
at 17 nsD B

GAG
GAG

. However, the return time to D from this

state ( 2800 nsB D
GAG

GAG
) remains long, confirming that

disordered configurations are energetically disfavored in the
GAG environment. Aβ42 interacting with POPC exhibits faster
and more balanced transitions. The interconversion times
between D and B are 4 nsD B

POPC and 86 nsB D
POPC . These

values suggest that while the folding transition is comparatively
fast compared to the other systems, the reverse transition is
significantly faster than in the GAG systems, pointing to a
shallower funnel and greater conformational flexibility, which is
surprising as the Aβ42 forms a tight complex with the POPC
lipids for the majority of the simulation time. Transitions
involving the global minimum of the POPC FEL (BPOPC) exhibit
similar behavior, with 6 nsD B

POPC
POPC

and 86 nsB D
POPC

POPC
.

The comparable time scales between D → B and D → BPOPC
suggest that state B may act as an intermediate in the transition
pathway toward the global minimum. The similar reverse times
imply that both B and BPOPC reside within the same free energy
basin.

The first passage time analysis complements the structural
interpretation of the free energy landscapes by quantifying the
kinetic accessibility of key states. The monomer and Aβ42-POPC
systems display relatively flat landscapes with fast interconver-

Figure 4. Free energy disconnectivity graph for Aβ42 in the presence of
POPC lipids. The energies are given in units of kBT (see scale bar on the
right), with k the Boltzmann constant, and T the absolute temperature.
The branches are colored according to the average number of residues
in β-sheet conformation in the ensemble of structures belonging to the
respective minimum, ranging from blue (no β-sheets) to red (15
residues involved in β-sheets). Representative structures of some
minima are shown, where B is the global minimum of the dimer FEL
and D is the global minimum of the monomer FEL projected onto the
Aβ42-POPC FEL. The structures are shown in the cartoon
representation, with β-sheets highlighted in yellow and the centroids
used in the DRID metric shown as spheres (blue for positive charge at
the N-terminus and K28 side chain, red for negative charge at the C-
terminus and D23, magenta for the hydrophobic F19 and L34). The
POPC lipids are shown as translucent spheres.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c05390
J. Phys. Chem. B 2025, 129, 11430−11440

11437

https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05390?fig=fig4&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c05390?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


sion, while the Aβ42-GAG system, similar to the Aβ42 dimer,4

exhibits a steep, funnel-like kinetics favoring stable, folded states.

5. DISCUSSION AND CONCLUSION
In this study, we demonstrated the effectiveness and versatility of
combining the DRIDmetric and freenet tools with the
energy landscape exploration frameworks PATHSAMPLE and
disconnectionDPS by applying this integrated workflow
to simulations of the Alzheimer’s amyloid-β peptide. This
application not only underscored the capability of our approach
to extract meaningful thermodynamic and kinetic insights from

MD data but also resulted in a practical, broadly applicable
protocol. The protocol facilitates future studies of MD
trajectories of IDPs and other aggregation-prone systems,
promoting a standardized methodology for comprehensively
characterizing their complex conformational energy landscapes.
This approach should be applicable to biophysical processes that
are accessible on a molecular dynamics time scale.

The case of Aβ42 illustrated that our energy landscape and
kinetics analysis approach can uncover unprecedented details of
its multifunneled energy landscape. As reviewed extensively, Aβ
is polymorphic at multiple structural levels�monomer,
oligomer, and fibril�owing to the inherent conformational
ambiguity of the sequence.3 The ability to adopt a disordered
state, especially in the N-terminal region resembling an IDP, as
well as more ordered structures, such as α-helices and β-hairpins,
reflects a highly dynamic conformational ensemble. These
nearly equally probable structures, modulated by environmental
factors, enable Aβ to transition between various states,
facilitating its aggregation into diverse fibrillar forms.47 Our
approach reveals the underlying complexity of the energy
landsdcape, providing a framework to interpret Aβ’s poly-
morphism and its chameleon-like behavior, as it adaptively shifts
conformation depending on the environment.3

In summary, the presented workflow, exemplified through the
case of Aβ, highlights the potential to unveil detailed energy
landscapes and kinetic pathways of IDPs and amyloid-forming
systems. We suggest the broader application of this method-
ology to other IDPs and amyloid-related proteins, aiming to
understand the conformational energy landscape at an atomic
level of detail. Ultimately, this framework paves the way for more
comprehensive insights into the structural basis of protein
disorder and aggregation, with implications for therapeutic
intervention and biomolecular design.
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Figure 5. First passage time probability distributions for interconver-
sions between disordered and β-hairpin states. The distribution t(ln )
of first passage times t for transitions between the disordered state D
and the β-hairpin state B is shown on a logarithmic scale. D and B were
originally defined from the monomer and dimer FELs,4 respectively,
and projected onto the Aβ42-GAG and Aβ42-POPC landscapes to
identify structurally overlapping states. For the Aβ42-GAG and Aβ42-
POPC systems, transitions to and from the global minima of the
respective FEL are also included.
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