001047547 001__ 1047547
001047547 005__ 20260107202515.0
001047547 0247_ $$2doi$$a10.1021/acs.jpcb.5c04866
001047547 0247_ $$2ISSN$$a1520-6106
001047547 0247_ $$2ISSN$$a1520-5207
001047547 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04373
001047547 037__ $$aFZJ-2025-04373
001047547 082__ $$a530
001047547 1001_ $$00000-0002-8416-316X$$aScherlo, Marvin$$b0
001047547 245__ $$aIR Spectroscopy: From Experimental Spectra to High-Resolution Structural Analysis by Integrating Simulations and Machine Learning
001047547 260__ $$aWashington, DC$$bAmerical Chemical Society$$c2025
001047547 3367_ $$2DRIVER$$aarticle
001047547 3367_ $$2DataCite$$aOutput Types/Journal article
001047547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767785195_11972
001047547 3367_ $$2BibTeX$$aARTICLE
001047547 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047547 3367_ $$00$$2EndNote$$aJournal Article
001047547 520__ $$aUnderstanding biomolecular function at the atomic scale requires detailed insight into the structural changes underlying dynamic processes. Vibrational infrared (IR) spectroscopy─when paired with biomolecular simulations and quantum-chemical calculations─determines bond length variations on the order of 0.01 Å, providing insights into these structural changes. Here, we address the forward problem in IR spectroscopy: predicting high-accuracy vibrational spectra from known molecular structures identified by biomolecular simulations. Solving this problem lays the groundwork for the inverse problem: inferring structural ensembles directly from experimental IR spectra. We evaluate two computational approaches, normal-mode analysis and Fourier-transformed dipole autocorrelation, against experimental IR spectra of N-methylacetamide, a prototypical model for peptide bond vibrations. Spectra are derived from simulation models at multiple levels of theory, including hybrid quantum mechanics/molecular mechanics, machine-learned, and classical molecular mechanics approaches. Our results highlight the capabilities and limitations of current theoretical biophysical approaches to decode structural information from experimental vibrational spectroscopy data. These insights underscore the potential of future artificial intelligence (AI)-enhanced models to enable direct IR-based structure determination. For example, resolving the so-far experimentally inaccessible structures of toxic oligomers involved in neurodegenerative diseases, enabling improved disease diagnostics and targeted therapies.
001047547 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001047547 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047547 7001_ $$0P:(DE-HGF)0$$aPhillips, Dominic$$b1
001047547 7001_ $$0P:(DE-HGF)0$$aKünne, Ricarda$$b2
001047547 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b3
001047547 7001_ $$0P:(DE-HGF)0$$aGerwert, Klaus$$b4
001047547 7001_ $$00000-0002-3599-9657$$aKötting, Carsten$$b5$$eCorresponding author
001047547 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b6$$eCorresponding author
001047547 7001_ $$00000-0001-7512-5252$$aMey, Antonia S. J. S.$$b7$$eCorresponding author
001047547 7001_ $$00000-0003-2693-9561$$aRudack, Till$$b8$$eCorresponding author
001047547 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.5c04866$$gp. acs.jpcb.5c04866$$n45$$p11652–11665$$tThe journal of physical chemistry / B$$v129$$x1520-6106$$y2025
001047547 8564_ $$uhttps://juser.fz-juelich.de/record/1047547/files/ir-spectroscopy-from-experimental-spectra-to-high-resolution-structural-analysis-by-integrating-simulations-and-machine.pdf$$yOpenAccess
001047547 8767_ $$d2025-11-03$$eHybrid-OA$$jPublish and Read
001047547 909CO $$ooai:juser.fz-juelich.de:1047547$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001047547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich$$b3$$kFZJ
001047547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b6$$kFZJ
001047547 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001047547 9141_ $$y2025
001047547 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001047547 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001047547 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047547 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2022$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001047547 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001047547 920__ $$lyes
001047547 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x0
001047547 980__ $$ajournal
001047547 980__ $$aVDB
001047547 980__ $$aUNRESTRICTED
001047547 980__ $$aI:(DE-Juel1)INM-9-20140121
001047547 980__ $$aAPC
001047547 9801_ $$aAPC
001047547 9801_ $$aFullTexts