001     1047547
005     20260107202515.0
024 7 _ |a 10.1021/acs.jpcb.5c04866
|2 doi
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04373
|2 datacite_doi
037 _ _ |a FZJ-2025-04373
082 _ _ |a 530
100 1 _ |a Scherlo, Marvin
|0 0000-0002-8416-316X
|b 0
245 _ _ |a IR Spectroscopy: From Experimental Spectra to High-Resolution Structural Analysis by Integrating Simulations and Machine Learning
260 _ _ |a Washington, DC
|c 2025
|b Americal Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767785195_11972
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding biomolecular function at the atomic scale requires detailed insight into the structural changes underlying dynamic processes. Vibrational infrared (IR) spectroscopy─when paired with biomolecular simulations and quantum-chemical calculations─determines bond length variations on the order of 0.01 Å, providing insights into these structural changes. Here, we address the forward problem in IR spectroscopy: predicting high-accuracy vibrational spectra from known molecular structures identified by biomolecular simulations. Solving this problem lays the groundwork for the inverse problem: inferring structural ensembles directly from experimental IR spectra. We evaluate two computational approaches, normal-mode analysis and Fourier-transformed dipole autocorrelation, against experimental IR spectra of N-methylacetamide, a prototypical model for peptide bond vibrations. Spectra are derived from simulation models at multiple levels of theory, including hybrid quantum mechanics/molecular mechanics, machine-learned, and classical molecular mechanics approaches. Our results highlight the capabilities and limitations of current theoretical biophysical approaches to decode structural information from experimental vibrational spectroscopy data. These insights underscore the potential of future artificial intelligence (AI)-enhanced models to enable direct IR-based structure determination. For example, resolving the so-far experimentally inaccessible structures of toxic oligomers involved in neurodegenerative diseases, enabling improved disease diagnostics and targeted therapies.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Phillips, Dominic
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Künne, Ricarda
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ippoliti, Emiliano
|0 P:(DE-Juel1)146009
|b 3
700 1 _ |a Gerwert, Klaus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kötting, Carsten
|0 0000-0002-3599-9657
|b 5
|e Corresponding author
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 6
|e Corresponding author
700 1 _ |a Mey, Antonia S. J. S.
|0 0000-0001-7512-5252
|b 7
|e Corresponding author
700 1 _ |a Rudack, Till
|0 0000-0003-2693-9561
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.5c04866
|g p. acs.jpcb.5c04866
|0 PERI:(DE-600)2006039-7
|n 45
|p 11652–11665
|t The journal of physical chemistry / B
|v 129
|y 2025
|x 1520-6106
856 4 _ |u https://juser.fz-juelich.de/record/1047547/files/ir-spectroscopy-from-experimental-spectra-to-high-resolution-structural-analysis-by-integrating-simulations-and-machine.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047547
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)146009
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21