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Abstract
Background  The so-called stay-green trait, a delay in onset and progression of leaf senescence, is associated with 
slower chlorophyll degradation and higher photosynthesis rates during maturation resulting in higher crop yields. 
Understanding the genetic and physiological basis of the stay-green trait and breeding cultivars with stable stay-
green behaviour across a range of different nitrogen (N) conditions and specifically under low N availability can 
contribute to ensuring wheat yields and reducing N fertilizer application.

The goal of this study was therefore to identify haplotypes associated with high stay-green capacity under different 
N availability conditions in wheat. A diverse set of 221 wheat cultivars was grown under three different N levels 
and phenotyped by uncrewed aerial vehicle (UAV)-based multispectral imaging to characterise genetic and 
environmental variation in stay-green. Haplotypes associated with stay-green were identified across N levels and 
specifically under low N availability. 

Results  The plant senescence reflectance index (PSRI) calculated from multispectral images was identified as the 
most specific stay-green indicator allowing for differentiation of genotypic effects due to its greater sensitivity to 
senescence-related changes in pigment composition and its higher reliability. We found genetic variance for stay-
green and a consistent genetic correlation between stay-green and grain yield at all imaging dates and N levels 
within the utilised diversity panel confirming its potential as a future breeding target.
Haplotype analyses revealed two favourable major allele haplotypes present in 95% of the stay-green cultivars, i.e. 
the top 25% of the diversity set based on PSRI values, which significantly enhance stay-green performance and grain 
yield. In addition, we identified a favourable minor allele haplotype specifically associated with stay-green under low 
N availability and capable of further increasing stay-green and grain yield when stacked onto the two favourable 
major allele haplotypes.

Conclusions  The newly identified stay-green haplotypes can be further used for fine-mapping and identifying the 
underlying genes as well as for selecting for higher stay-green and grain yield. Thereby our results can contribute to 
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Background
Wheat (mainly bread wheat, Triticum aestivum, but also 
durum wheat, T. turgidum) has a major role in ensuring 
food security, accounting for around 27% of the average 
minimum daily energy requirement per person and for a 
comparable fraction of the recommended daily protein 
intake worldwide [1, 2]. It also has a high environmental 
impact, being the most-produced crop in terms of har-
vested area according to a ranking from 2022 [3].

The demand for staple crops such as wheat is increas-
ing due to a growing world population [4]. At the same 
time biotic and abiotic threats to yield and yield stabil-
ity, e.g. climate change, pathogens and pests [5, 6], are 
slowing down or ending the positive trend in wheat yield 
development [7, 8]. Different constraints to expanding 
the area of arable land, e.g. soil degradation or competi-
tion with biofuels [9], further aggravate this situation. 
Therefore, in spite of significant progress in improving 
wheat yield potential over the past seven decades, the 
requirement for wheat cultivars with higher and more 
stable yields still remains high [10, 11].

Several studies have shown that prolonging photosyn-
thetic activity and maintaining its efficiency during the 
critical period of grain filling is an effective approach 
to increasing and stabilising grain yields of cereals [12, 
13]. This so-called stay-green trait, a heritable delay in 
onset and progression of leaf senescence, is associated 
with slower chlorophyll degradation and nutrient remo-
bilisation and with a higher photosynthesis rate during 
maturation [14–16]. The trait is considered functional if 
prolonged leaf greenness results in maintenance of pho-
tosynthetic activity, increased translocation of assimilates 
to harvested tissues, and ultimately higher yields. It is 
referred to as non-functional, if these processes are dis-
rupted [12, 16]. The high correlation consistently found 
between stay-green and yield indicates that selection 
for functional stay-green could contribute to the devel-
opment of adaptive high-yielding cultivars for diverse 
environmental conditions [17, 18]. The genetic variance 
for the stay-green trait within the wheat breeding germ-
plasm pool underpins its high potential as a future breed-
ing target [18–20].

Leaf senescence is closely related to its water and nitro-
gen status [21–23]. Under terminal water deficit, onset 
and progression of senescence were found to result from 
the source-sink balance between N supply and N demand 
[23, 24]. N demand is largely determined by grain num-
ber during maturation [23, 24]. N supply is fuelled by 

uptake of soil available N or senescence-related degra-
dation and remobilisation from leaves, shoots and roots 
[23–25] Genotypic differences in stay-green can there-
fore be partly explained by differences in N uptake and 
utilisation efficiency [23–25]. N uptake efficiency defined 
as plant N per soil available N and N utilisation efficiency 
calculated as grain yield per plant N are key components 
of nitrogen use efficiency (NUE, defined as yield per soil 
available N) [26]. Therefore, a high NUE can make stay-
green more independent of N supply [27]. In low-input 
agricultural systems, such as in parts of the global south, 
a high stay-green capacity based on high NUE can con-
tribute to ensuring yields [28]. In high-input production 
systems as they are common in western Europe, a high 
stay-green capacity based on NUE will allow for a reduc-
tion in N fertilisation [29]. Reducing N fertilisation will 
help to minimise the environmental impact of wheat pro-
duction and to achieve the objectives of the European 
Farm to Fork Strategy aiming to reduce fertiliser use by at 
least 20% by 2030 [30].

During plant senescence a series of profound bio-
chemical and biophysical changes take place, altering the 
reflectance properties and the phenotype of the leaves. 
Repeated visual scoring of these phenotypic changes to 
determine onset and rate of the process is labour-inten-
sive, highly subjective and mainly captures visible pig-
ment changes while disregarding other characteristics 
[31]. In recent years, the visual assessment has therefore 
been replaced by non-destructive measurement meth-
ods of reflectance properties based on RGB (Red, Green, 
Blue), multispectral and hyperspectral sensors. These 
can be integrated in hand-held devices or mounted on 
uncrewed aerial vehicles (UAVs) to achieve the required 
throughput for phenotyping large diversity panels in 
diverse environments at high temporal resolution [32].

Various approaches have been proposed to derive 
senescence metrics from these data and characterise 
cultivar-specific senescence profiles. Some research-
ers have suggested calculating singular metrics such as 
relative senescence scores, relative stay-green scores, or 
elapsed thermal time to a particular senescence score 
[20, 32]. Other approaches include modelling such as 
using two-parameter or four-parameter logistic-type 
models or splines [33, 34] to derive characteristic turn-
ing points and periods such as the beginning, end or 
duration of senescence [32, 33] or to derive senescence 
metrics such as senescence rate or area under the curve 
[20, 32, 33]. Vegetation indices and full-spectrum models 

improving our understanding of the complex genetic regulation underlying stay-green in different environments and 
to breeding new cultivars with stable performance across N levels or specifically under low N availability.
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differ considerably in their sensitivity to senescence-spe-
cific spectral changes in leaf reflectance [31]. The PSRI 
for example has shown a high sensitivity. It captures pri-
marily the chlorophyll/carotenoid ratio, which is subject 
to major changes during senescence [35]. In contrast, 
the Normalised Difference Vegetation Index (NDVI) was 
found to be relatively insensitive to physiological changes 
occurring at the leaf scale in the early phase of senes-
cence [36].

In recent years, these advances in UAV-based high-
throughput phenotyping of stay-green have been used 
for genome-wide association studies (GWAS) in crops 
[34, 36, 37]. The number of marker-trait associations 
(MTAs) identified in these studies and their dependence 
on the diversity panel and the environment support the 
understanding that stay-green is under complex genetic 
control [11, 18–20, 36]. Gene ontology enrichment 
analyses based on marker-trait associations identified 
for stay-green in wheat suggested the significant asso-
ciation of the candidate genes with biological processes 
including leaf senescence, ethylene response, ageing and 
programmed cell death, and functions primarily related 
to nutrient reservoir activity [20]. These studies have 
revealed various physiological mechanisms underly-
ing the senescence process and its regulation. However, 
the genetic basis of stay-green behaviour in wheat is still 
poorly understood [20].

To further elucidate the genetic basis of stay-green in 
wheat and its relationship with N availability, we con-
ducted a two-year field experiment with 221 wheat 
cultivars grown under three different soil N levels. Stay-
green was characterised using UAV-based multispectral 
imaging for subsequent use in GWAS and identification 
of genetic regions underlying this trait. The goals of the 
present study were (1) to compare vegetation indices 
from multispectral drone images and identify the most 
specific, sensitive and reliable stay-green indicator, (2) to 
characterise genetic and environmental variance for stay-
green in the diversity panel at different time points, (3) to 
identify favourable haplotypes for genetic markers asso-
ciated with stay-green across nitrogen fertilisation levels 
and specifically under low N availability, and to assess 
their effects on stay-green and grain yield, and (4) to 
examine allele frequencies in the present diversity panel 
for introduction and indirect selection of favourable stay-
green alleles over the past decades.

Methods
Plant material
The study was performed using a diversity set comprising 
221 bread wheat cultivars. These included 165 German 
cultivars and 56 accessions from other European coun-
tries, USA, Mexico, India and Australia representing the 
global genetic diversity. The German cultivars covered 50 

years of German bread wheat breeding history from 1966 
to 2016 and all baking quality classes. They were selected 
based on their economic and agronomic importance in 
German wheat production during their period of release. 
Details on cultivars including year and country of regis-
tration are provided in Tab. S1. The composition of the 
utilised diversity panel has been described before [38, 
39].

Single nucleotide polymorphism genotyping
Genotyping of the accessions of the diversity set was 
carried out at SGS Trait-Genetics GmbH (Gatersleben, 
Germany) using the Infinium iSelect 15 K single nucleo-
tide polymorphism (SNP) bead array comprising 13 006 
polymorphic loci [40], as well as the 135 K Axiom exome 
capture array carrying 136 780 SNP markers [41]. The 
resulting SNP data were merged in a single dataset and 
aligned to the reference wheat genome assembly Ref-
Seq v1.0 [42] using the alignment tool Bowtie2 version 
2.3.4.3 [43]. Filtering and quality control procedures were 
applied to the markers as previously described [44] to 
select for high-quality locus-specific SNPs which were 
accurately mapped to the reference genome. Monomor-
phic markers and SNPs with minor allele frequencies 
(MAFs) below 3% and/or with more than 5% missing 
data were discarded. Ultimately, 24 216 informative SNP 
markers (Tab. S2) with defined physical positions were 
retained for further analysis [44]. The SNP dataset uti-
lised in this study has previously been published and is 
freely accessible (supplementary table S2 in [44]).

Multi-year, multi-environment field experiments
Field experiments were conducted at Campus Klein-
Altendorf, a field research facility of the University of 
Bonn (geographic location: 50.61°N, 6.99°E, and 187 m 
above mean sea level), under natural field conditions in 
two consecutive growing seasons from 2018 to 2019 and 
from 2019 to 2020. The annual trials were conducted in a 
split-plot design with three nitrogen fertilisation levels as 
the main plots. Within these main plots, the experimental 
design was a fully randomised block layout with 221 cul-
tivars in each of the two blocks (replications, see Fig. 1). 
Technically, the 221 cultivars were sown in 21 columns 
and 11 rows, creating additional plots which were used 
for seed propagation. The three nitrogen fertilisation 
levels were high N = 220 kg N/ha (including mineral soil 
nitrogen, Nmin), intermediate N = 110 kg N/ha (includ-
ing Nmin), and low N = no additional N fertiliser (only 
Nmin). These are hereafter referred to as low, intermedi-
ate and high N level. Fertilisation doses were adjusted to 
Nmin by first determining Nmin, then defining Nmin as the 
low nitrogen level, and finally dosing the main plots with 
intermediate and high N content up to the target concen-
trations of 110 and 220 kg N/ha, respectively. The average 
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Nmin value was determined according to standard meth-
ods [45, 46] as described in a previous study [47] from a 
mixed sample obtained from a total of 18 sampling points 
arranged in a diagonal scheme across the experimental 
area. In 2019 Nmin was 93 kg N/ha; in 2020 it was 81 kg 
N/ha. The intermediate N level was achieved by a single 
fertiliser application given in February 2019 and March 
2020, respectively. The high N level was achieved by three 
fertilisation applications in February, April, and June 
2019 and in March, April, and June 2020, respectively. 
The position of the N fertilisation levels within the exper-
imental area was completely randomised each year. The 
whole experimental area was changed annually in a crop 
rotation system.

Wheat cultivars were grouped according to their height 
and maturation to reduce neighbour effects due to dif-
ferences in plant size and maturity. Grouping was based 
on prior examination of the diversity panel. Within these 
groups cultivars were completely randomised. The wheat 
cultivars were sown at a density of 330 seeds per square 
metre in 7 × 3 m sub-plots with a harvesting area of 
5 × 1.65 m in the centre of the area (plot in plot design).

Fertilisers, except for nitrogen, were applied accord-
ing to requirements determined individually each year to 
prevent confounding effects from basic nutrient deficien-
cies. Fungicide application and weed control followed 
standard management procedures recommended for the 
region.

Growing degree days
Cumulative growing degree days (GDDs) were calculated 
according to the Peterson equation as the sums of the 
averages of the daily temperature minimum and maxi-
mum minus the basic threshold temperature (°C) [46]. A 
basic threshold temperature of 4.0 °C [48] and an upper 
limit of 25 °C were defined [49]. Values below the lower 
or above the upper limit were set to these threshold val-
ues. Cumulative GDDs were calculated for the time peri-
ods from January 1rst to the respective imaging dates [48]. 
Imaging dates were excluded from the addition because 
flights were carried out in the mornings.

Meteorological data were collected by a local weather 
station (from GWU-Umwelttechnik GmbH, Talstr. 3, 
50374 Erftstadt, geographic location: 50.37°N, 6.59°E, 180 
m above mean sea level). Worldwide the year 2020 was 
the second warmest on record. In Germany, the average 
temperature (10.4 °C) was 2.2 degrees above the refer-
ence period of 1961 to 1990 and total precipitation per 
year (710 l/m²) was around 10% below the average (789 
l/m²) [50]. Yet, there was no exceptional heat period and 
rainfall was regular throughout the entire data collection 
phase.

Phenotypic data collection
Plant height was measured manually. Grain and straw 
yield were determined from the combined harvest of the 
whole plots. Harvest index was calculated as the grain 

Fig. 1  Overview of the field experiment at Campus Klein-Altendorf, research facility of the University of Bonn. The experiment was designed as a split-plot 
design with three N levels (high, intermediate and low N) as main plots, two blocks (replications) within each main plot and the complete set of cultivars 
(221) in each of the blocks. The experimental area is shown as Plant Senescence Reflectance Index calculated from UAV-based multispectral images 
recorded on 24 June 2020. Unit of axis scaling: metres
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yield divided by total above-ground biomass (i.e. straw 
yield plus grain yield) in kg/plot. Grain yield per plot 
was determined by threshing from the mature standing 
canopy. Immediately after threshing, grain moisture was 
measured and grain yield was corrected to a standard 
moisture of 14%. A random grain subsample from each 
plot was used to determine the thousand-kernel weight. 
Nitrogen use efficiency was calculated for each cultivar 
and N fertilisation level by dividing cultivar-specific grain 
yield in g/m2 by soil available nitrogen per square metre 
[51]. Relative leaf chlorophyll content was estimated 
non-destructively using a chlorophyll metre (SPAD-502, 
Konica Minolta Sensing Europe B.V., Nieuwegein, Neth-
erlands). Measurements were performed on the flag leaf 
from the main tiller of three representative plants of each 
cultivar per replication. The average of these six plants 
per cultivar and treatment level was used as an estimate 
of the chlorophyll content. All measurements were taken 
between 11 am and 3 pm on 27 May 2020 (777 GDDs, 
early heading stage).

Multispectral tracking of senescence
Image acquisition and processing
Multispectral image data were collected with a Mica-
Sense RedEdge Dual camera system in 2020 and with a 
RedEdge-MX camera in the reference year 2019 (AgEa-
gle Aerial Systems Inc., Wichita, KA, USA). Both were 
equipped with a downwelling light sensor (DLS). The 
MicaSense RedEdge Dual camera system was used to 
capture multispectral images, recording a total of 10 
spectral bands covering the range from blue to near-
infrared radiation. The bands, their respective centre 
wavelengths and bandwidths are as follows: coastal blue 
(444 nm, 28 nm), blue (475 nm, 32 nm), green (531 nm, 
14 nm), another green (560 nm, 27 nm), red (650 nm, 
16 nm), another red (668 nm, 14 nm), red edge (705 nm, 
10 nm), another red edge (717 nm, 12 nm), near-infra-
red (740 nm, 18 nm), and an additional near-infrared 
(842 nm, 57 nm). Of these, the bands at 475, 560, 668, 
717, and 842 nm are also captured by the MicaSense 
RedEdge-MX system, which contains only one of the 
two cameras operating in the dual system. The camera 
system was mounted on a multirotor UAV, Matrice 600 

Pro (DJI, Shenzhen, China). The UAV was flown at 30 m 
above ground level, with a front overlap of 90% and side 
overlap of 70%, resulting in a pixel size of 2 × 2 cm. Two 
flights were carried out at each time point to cover the 
entire field. A set of eight or nine Lambertian reference 
panels of different grey levels [52] was placed next to the 
experiment for each flight and used for calculating top of 
canopy reflectance. Flights were conducted within two 
hours of local solar noon under clear sky (27 May and 24 
June 2020 and 7 June 2019) or homogeneous overcast (9 
June and 7 July 2020) conditions. One imaging date (27 
May 2020/777 GDDs) was just before the average head-
ing date on 2 June 2020 with a standard deviation (SD) 
of 3.7 days. Three imaging dates (9 June/907 GDDs, 24 
June/1107 GDDs and 7 July 2020/1290 GDDs) were 
between heading and the average yellow maturity date on 
17 July 2020 (SD = 2.9 days). Heading is considered a vis-
ible indicator of subsequent flowering which is more dif-
ficult to determine in self-pollinating plants with closed 
flowers. Hence, the imaging dates 9 and 24 June 2020 lie 
within the period of flowering and grain filling which is 
also prone to the onset of senescence. At the last imag-
ing date (7 July 2020) most plants were already in an 
advanced stage of senescence, and hence data from this 
flight were excluded from the repeated-measures analysis 
of variance (ANOVA) and the GWAS.

Images were processed in Metashape Professional (ver-
sion 1.8.1 build 13915) by Agisoft [53]. Image alignment 
was done at high accuracy and further optimised using 
19 ground control points with known geographic coordi-
nates as a reference. Orthomosaics were constructed via 
an intermediate high accuracy dense cloud and exported 
in TIF format at a resolution of 2 × 2 cm. Calibration of 
orthomosaics was done according to the empirical line 
reflectance calibration method described by Chakhvash-
vili et al. [52] using QGIS software (Desktop version 3.28) 
[54].

Calculation of vegetation indices and choice of stay-green 
indicator
Various vegetation indices (VI) were calculated from the 
spectral bands of the orthomosaics as detailed in Table 
1. These included the classical chlorophyll and biomass 

Table 1  Calculated vegetation indices with formulas, centre wavelengths of the utilised spectral bands, and references of their 
previous use as stay-green indicators
Vegetation index Formula and spectral bands
Normalised Difference Vegetation Index (NDVI) [19, 20, 36, 55, 56] (Near-IR - Red)/(Near-IR + Red)

(842 nm–668 nm)/(842 nm + 668 nm)
Normalised Difference Red Edge Index (NDRE) [20, 34, 56] (Near-IR - Red Edge)/(Near-IR + Red Edge)

(842 nm–717 nm)/(842 nm + 717 nm)
Plant Senescence Reflectance Index (PSRI) [31] (Red/Blue) - Near-IR

(668 nm/475 nm) − 740 nm (2020 experiment)
(668 nm/475 nm) − 842 nm (2019 experiment)



Page 6 of 21Behn et al. BMC Plant Biology         (2025) 25:1405 

index NDVI [20] as well as indices that have been more 
specifically used to track senescence in recent stud-
ies such as the Normalised Difference Red Edge Index, 
NDRE [57], and PSRI [31]. Calculations were carried out 
in R software (version 4.4.0 for Windows) [58]. Formu-
las and spectral bands used to calculate VI are given in 
Table 1. Since the PSRI was originally proposed as (678 
nm–500 nm)/750nm [35], we used the 740 ± 9 nm band 
as near-infrared (near-IR) band in the main dataset from 
the harvest year 2020. In the reference dataset from 2019 
lacking this spectral band we used the 842 ± 29 nm band 
as near-IR band instead. However, moving the near-IR 
band towards higher wavelengths was reported to have 
little effect on the accuracy of the index [31].

Medians per field plot of the calculated vegetation indi-
ces were extracted in R using the terra package (version 
1.7.71) [59] and shape files previously generated in QGIS. 
These covered the central area of each plot with a uni-
form size of 6.4 m². In the 2020 median dataset five field 
plots were excluded from the following analyses due to 
missing or extremely poor vegetation coverage.

The relationship between the calculated vegetation 
indices and leaf chlorophyll content (SPAD) was esti-
mated by means of a Pearson correlation coefficient 
across and within N levels (measurement date: 27 May 
2020). Likewise, the vegetation index selected as indica-
tor for estimating the degree of senescence (PSRI) was 
examined for correlation with growth and yield-related 
traits.

Reliability of phenotypic assessment of the cultivars by 
the vegetation indices was estimated according to Ber-
nardo [60] using the following formula [61].

	

Reliability =VC/ (VC + (VC×N/n)
+ (VR/r × n))

where VC is the variance component due to the cultivars, 
VCxN represents the variance component due to the inter-
action between cultivars and N levels, VR is the residual 
variance, n stands for the number of N levels, and r is the 
number of replications (number of blocks × number of 
replicates per block). The variance components estimated 
as best linear unbiased estimators (BLUEs) have been cal-
culated based on the linear mixed model given below by 
setting cultivar and cultivar-by-N level interaction as ran-
dom factors. The standard error of reliability was calcu-
lated using the method by J. Holland [62].

Based on its sensitivity for senescence-related changes 
in leaf reflectance and its reliability, the PSRI was cho-
sen as stay-green indicator for subsequent analyses. The 
PSRI increases with increasing degree of senescence. This 
means the PSRI is inversely correlated with stay-green 
and low PSRI values indicate a high degree of stay-green, 
whereas high PSRI values are associated with a low 

degree of stay-green. Accordingly, allelic variants referred 
to as `favourable´ alleles are associated with lower PSRI 
values, whereas those designated as `unfavourable´ are 
associated with higher PSRI values. The highest perform-
ing 25% of cultivars based on PSRI values during the cen-
tral senescence phase (9 and 24 June 2020) are referred to 
as `stay-green cultivars´ in the following.

Statistical analyses of selected stay-green indicator
Linear mixed model
Data were prepared by centring and scaling the explana-
tory variables growing degree days and N level. A square 
root transformation was applied to the selected vegeta-
tion index PSRI after adding a constant [10] to obtain 
exclusively positive values [63].

The following linear mixed model was fitted to the data

	

Yijkl =µ + Ni + Bj + nbij + Ck
+ CNki + cnbkij + Tl
+ TNli + TClk + TNClik
+ εijkl

where Yijkl represents a measured value of the dependent 
variable PSRI in the respective sub-plot, µ is the grand 
mean, Ni represents the fixed effect of nitrogen fertilisa-
tion level i, Bj is the fixed effect of replication j, Ck stands 
for the fixed effect of cultivar k, Tl is the fixed effect of 
time point of data collection l in units of GDDs. The 
remaining model terms represent the respective interac-
tion effects and three error terms, a main plot error (bnji), 
a sub-plot error (bncjik), and a residual error (εijkl). Hence, 
the model has the structure of a split-plot design [64, 65] 
or a repeated measures design [66] accounting for the 
dependence and covariance between repeated measure-
ments. This is achieved by incorporating the sub-plot 
error, a random variable for the smallest experimen-
tal units, and thereby a compound symmetry structure. 
Error terms are denoted by lower case letters to distin-
guish these random effects from fixed effects.

Genotypic effects for GWAS were modelled as random 
effects (BLUEs, Tab. S3). The effect of block was set as 
fixed in the model as it only has two factor levels. This 
follows the general rule that it requires five or more fac-
tor levels to benefit from setting a factor as random [67].

The model was fitted using the mixed function of the 
afex software package (version 1.4-1) [68], which esti-
mates mixed models with the lmer function of the lme4 
package [69] and calculates p-values for all fixed effects. 
The function then passes the model to the anova method 
from the lmerTest package [70] to run the mixed model 
ANOVA using Type III sums of squares.

P-values were calculated using the Kenward-
Roger method, which provides a high protection 
against anti-conservative results, and subjected to a 
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Greenhouse-Geisser correction. The Greenhouse-
Geisser procedure is commonly applied to correct p-val-
ues if the sphericity assumption of a repeated measures 
ANOVA is not met based on Mauchly’s test. Sphericity in 
this case refers to the equality of the variances of the dif-
ferences between scores for any two time points.

The main data set from the harvest year 2020 was com-
pared to the reference year 2019. To estimate the strength 
of the relationship between the stay-green performances 
of individual cultivars in the two years, a Pearson correla-
tion between genotypes BLUEs values for PSRI measured 
on 9 June 2020 (907 GDDs) and 7 June 2019 (808 GDDs) 
was calculated. However, in 2019 a MicaSense RedEdge-
MX camera capturing only five spectral bands was used 
instead of the dual camera system used in 2020. There-
fore, from the 2019 image dataset PSRI was calculated 
using a different NIR band (842 ± 29 nm instead of 740 ± 9 
nm).

Calculation of relative senescence rate
Relative senescence rates (RSR) were calculated accord-
ing to a formula suggested by Yu [20] which was adapted 
to PSRI:

	
RSR =((PSRIlater date − PSRIearlier date)/PSRIearlier date)

× 100

where PSRIlater date is the PSRI value at the later date and 
PSRIearlier date is the PSRI value at the earlier date of a 
given time period. This results in the percent change in 
PSRI between the earlier and the later date. The modifi-
cation was necessary because in contrast to most other 
VI, the PSRI is inversely proportional to plant greenness. 
RSRs were calculated for the time periods from 27 May 
to 9 June 2020 (777 to 907 GDDs) and from 9 June to 24 
June 2020 (907 to 1107 GDDs).

Genome-wide association study
A genome-wide analysis of marker-trait associations 
between PSRI BLUEs and all 24 216 SNP markers (sup-
plementary table S2 in [44]) was performed using the 
Genome Association and Prediction Integrated Tool 
(GAPIT) for R software (version 3) [71]. The analyses were 
run for all three imaging dates across N levels and sepa-
rately for the low N level. Two multi-locus models were 
used for GWAS, the Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) and 
the Fixed and random model Circulating Probability 
Unification (FarmCPU) ([72]– [73]). Both models use the 
first three principal components derived from all markers 
as covariates to reduce false positives due to population 
stratification. In addition, BLINK iteratively incorporates 
associated markers as covariates for testing markers to 
eliminate their connection to the cryptic relationship 

among individuals. These associated markers are selected 
based on linkage disequilibrium (LD) and optimised for 
Bayesian information content and re-examined across 
multiple tests to reduce false negatives.

To account for multiple testing and avoid false posi-
tive MTAs, the significance level was adjusted using 
the Bonferroni correction (shown as a green line in the 
Manhattan plots). In addition, p-values calculated for 
marker-trait associations were corrected using the Ben-
jamini-Hochberg procedure and a false discovery rate 
threshold cut-off (5%) was determined, which is indi-
cated as a dashed green line in the Manhattan plots [74]. 
Principal component analysis was conducted in R using 
the prcomp function from the stats package [75].

Identification of stay-green haplotypes
The haplotypes were identified by k-means analysis 
in SAS software version 9.4 Proc fastclus [76]. Adja-
cent markers with an LD greater than 0.7 to the marker 
of interest were included. At least five members were 
required to form a haplotype. Haplotype codes consist 
of a letter in the first position indicating whether it is a 
major or minor allele, a second letter for the respective 
deoxyribonucleic acid (DNA) base and optionally a let-
ter indicating different variants. Haplotypes identified as 
corresponding to the major (most frequently observed) 
allele were labelled by the capital letter M. Haplotypes 
identified for the minor allele were coded as the lower-
case letter m. DNA bases are abbreviated by their first 
letters as C = cytosine, T = thymine, G = guanine and A 
= adenine. If there were different variants of a major or 
minor allele haplotype, this was denoted by the letter v.

Significant differences between three or more haplo-
types were determined using an ANOVA followed by a 
Tukey’s honest significant difference test, or in the case of 
unequal variances by a Kruskal-Wallis test followed by a 
Wilcoxon test. In case of comparisons between two hap-
lotypes significant differences were assessed using a Stu-
dent’s t-test for equal variances or a Welch’s t-test in case 
of unequal variances. Differences indicated as significant 
in the following were at least significant at the 5% level 
(α = 0.05). Explicitly specified significance levels were 
below α = 0.05.

Results
Vegetation indices significantly predict chlorophyll content
All three vegetation indices, NDVI, NDRE and PSRI, 
significantly predicted chlorophyll content (SPAD, 
p-values ≤ 0.001) in the regression analyses across N fer-
tilisation levels and at each individual N level.

Across N levels, Pearson correlation with SPAD was 
moderate for NDVI (r = 0.57) and strong for NDRE 
(r = 0.64) and PSRI (r = −0.61, p-values < 2.2e-16, mea-
surement date: 27 May 2020, Fig. 2). However, the 



Page 8 of 21Behn et al. BMC Plant Biology         (2025) 25:1405 

correlation results for NDVI showed clear signs of satu-
ration. Hence, PSRI and NDRE were selected as possible 
stay-green indicators for further analyses.

Within the treatment groups, PSRI showed the stron-
gest correlation with SPAD at low N (r = − 0.5) and 
weaker relationships at intermediate (r = − 0.4) and high 
N (r = − 0.16, Fig. 2). NDRE showed a similar pattern 
with the strongest relationship at low N (r = 0.55) and 
declining strengths at intermediate (r = 0.42) and high N 

(r = 0.24). All correlations were significant at least at the 
0.1% level (p ≤ 0.001).

Genetic and environmental variance in stay-green present 
at all imaging dates
Stay-green performance was estimated by the vegeta-
tion indices NDRE and PSRI. Genetic variance for stay-
green was present at all three time points and N levels as 
shown by the mixed model ANOVA (Figs. 3 and 4, and 
Tab. S7). The greatest genetic variance was observed 
at an advanced stage of senescence (24 June 2020/1107 
GDDs). Environmental variance for stay-green was also 
present at all imaging dates. Stay-green was consistently 
greater at high N, whereas senescence began earlier and 
progressed faster at low N. While the effects of cultivar 
and N level were significant, their interaction was not. 
However, there were significant interactions between N 
level and time as well as cultivar and time (p ≤ 0.001).

The stay-green performance of individual cultivars was 
highly correlated between the repetitions of the experi-
ment. For PSRI BLUEs a high Pearson correlation was 
found between 9 June 2020 and the reference date 7 June 
2019 (r = 0.64, p-value < 2.2e-16, Fig. S1).

PSRI chosen as stay-green indicator due to higher 
reliability
Estimates of reliability calculated for NDRE and PSRI 
across N levels according to Bernardo [60] varied 
between the two vegetation indices and the imaging 
dates (Fig. 5). However, reliability was consistently higher 
for PSRI than for NDRE. PSRI was therefore chosen as 

Fig. 3  (a) PSRI and (b) NDRE by N level over time. Low N = 81 kg/ha, Inter-
mediate N = 110 kg/ha and High N = 220 kg/ha. Dates translate to grow-
ing degree days as follows: 27 May = 777 GDDs, 9 June = 907 GDDs, 24 
June = 1107 GDDs and 7 July 2020 = 1290 GDDs

 

Fig. 2  Scatter plots with Pearson correlations between (a) SPAD and PSRI and (b) SPAD and NDRE calculated for low N (81 kg/ha), intermediate N (110 kg/
ha), high N (220 kg/ha), and across N levels. Sampling date: 27 May 2020 (777 GDDs). R Pearson correlation coefficient, p p-value. The outer edges of the 
shaded areas represent the 95% confidence intervals calculated for the correlations
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stay-green indicator for the following analyses. This 
decision was supported by previous studies reporting 
a higher sensitivity of the PSRI in tracking senescence 
dynamics [30, 57].

High performing cultivars show temporary decline in 
relative senescence rates
Senescence rates representing relative changes (%) in 
PSRI between two time points varied between culti-
vars, N levels, and time periods (Fig. 4, Tab. S4a + b). The 

greatest variability was observed between 9 and 24 June 
2020, when part of the diversity set showed a decline 
in relative senescence rates whereas others continued 
to grow senescent at unaltered speed (Fig. 4a, Tab. S8). 
Comparing the ten highest with the ten lowest perform-
ing cultivars based on their genotypic effects on PSRI for 
each N level (Fig. 4b) shows that this slowdown in senes-
cence was most pronounced at high N.

Fig. 5  Reliability according to Bernardo [60] for PSRI and NDRE at the four imaging dates. 27 May = 777 GDDs, 9 June = 907 GDDs, 24 June = 1107 GDDs 
and 7 July 2020 = 1290 GDDs

 

Fig. 4  Time course of the stay-green indicator PSRI by N level (panels) and cultivar (colour coding as indicated in the legend) shown for (a) all cultivars 
and (b) the ten highest and lowest performing cultivars based on their genotypic effects on PSRI during the central senescence period (9 and 24 June 
2020). The ten highest performing cultivars were Avenir, Pionier, Vuka, Discus, Boxer, Gourmet, Robigous, Matrix, Mentor and Julius. The ten cultivars with 
the poorest stay-green performance were NS-46-90, Pobeda, Cajeme 71, Ivanka, Renesansa, Siete Cerros, Triple dirk S, NS-66-92, Benni multifloret and 
Centurk. 27 May = 777 GDDs, 9 June = 907 GDDs, 24 June= 1107 GDDs, and 7 July 2020 = 1290 GDDs
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Correlation between PSRI and yield strongest under low N 
availability
PSRI was found to be strongly correlated with grain yield 
and NUE across and within N levels (Fig. 6). Since NUE 
is calculated from grain yield, both share the same cor-
relation coefficient. The genetic correlation between PSRI 
and grain yield/NUE increased throughout the course of 
senescence from − 0.49 (27 May) to −0.60 (9 June) and 
− 0.68 (24 June 2020). Within N levels, the correlation 
was highest at low N (r = −0.81) and lower at intermedi-
ate and high N (r = −0.68). PSRI also showed a high cor-
relation with straw yield (ranging from − 0.7 to −0.49) and 
a moderate correlation with manually measured plant 
height (ranging from − 0.44 to −0.36, 9 June 2020/907 
GDDs). The strongest correlations of PSRI with all four 
traits were found at low N.

Diversity panel represents five decades of plant breeding 
history
The utilised diversity set of 221 cultivars represents the 
genetic diversity from five decades of plant breeding 
progress in Germany and other geographic regions as 
described previously [44]. For the principal component 
analysis, the cultivars were assigned to 14 groups based 
on origin (Germany/other) and decade of release. The 
plots showing principal components (PC) 1 to 3 indicate 
several overlapping clusters in the diversity panel (Fig. 7). 
Although no clear separation is apparent, some relevant 
patterns can be identified in the graphs. For example, 
the more recent German genotypes differ from the older 
genotypes from other origins in the first component (Fig. 
7a + b). However, it is important to note that this compo-
nent explains only 6.1% of the total genetic variance pres-
ent in this cultivar set.

Marker-trait associations for stay‑green identified across N 
levels and specifically at low N
In total, 26 unique marker-trait associations were iden-
tified, 16 across N levels and 11 under low N availabil-
ity with one duplication (AX-111561744). Some of these 
Markers were repeatedly identified by both GWAS mod-
els (AX-111561744 and wsnp_BQ160404A_Ta_1_1) or in 
both years (AX-111561744 and AX-158618766). Others 
were identified at all three imaging dates in 2020 such as 
the locus on chromosome 7 A specified by the markers 
Kukri_rep_c68371_1242 and BS00061911_51.

Across N levels, three large effect loci with a propor-
tion of variance explained (PVE) > 10% were identified 
(Table 2, Tab. S5 and Fig. 8). Among these large effect 
loci, the favourable major allele markers AX-111,561,744 
and AX-158,618,766 explained the largest proportions of 
phenotypic variance in the central senescence phase (9 
June 2020) accounting for 58.3% and 24.5%, respectively. 
Both MTAs have also been identified across N levels in 
the reference year 2019 (Table 2 and Tab. S5). One of 
the three large effect loci identified across N levels cor-
responds to a favourable minor allele (AX-111103882). 
However, although the marker AX-111,103,882 accounts 
for a PVE of 11%, its effect size is relatively small (0.005).

Under low N availability, four large effect loci were 
significantly associated with stay-green (Table 2). 
One of them had also been found across N levels (AX-
111561744). Three of these large effect loci were exclu-
sively identified under low N availability (AX-158578529, 
BS00067216_51 and Tdurum_contig30082_197). Of 
these, BS00067216_51 and AX-158,578,529 explained 
the highest proportions of phenotypic variance 
accounting for 36.0 and 32.4%, respectively. The maker 
BS00067216_51 has a minor allele with favourable 
effects on stay-green. The MTAs identified under low N 

Fig. 6  Pearson correlation for the stay-green indicator PSRI and phenotypic traits at (a) low, (b) intermediate and (c) high N, respectively. PH = plant 
height, GY/NUE = grain yield and nitrogen use efficiency (which share the same correlation coefficients), HI = harvest index, SY = straw yield. Results are 
shown for 9 June 2020 (907 GDDs). Colour code: shades of red = negative correlations, shades of blue = positive correlations, darker colours correspond 
to higher correlation coefficients and vice versa. All correlations indicated by a Pearson correlation coefficient and colour were significant at the 5% level
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availability in 2020, however, did not match those identi-
fied in the reference year 2019.

Identified haplotypes enhance stay-green performance 
and grain yield
Haplotype analyses revealed that the favourable 
major allele haplotypes identified for the markers 
AX-111,561,744 and AX-158,618,766 significantly 
enhance stay-green and grain yield at all studied N levels 
(Fig. 9, Fig. S2). The favourable variants of these two hap-
lotypes were present in 95% of the stay-green cultivars, 
i.e. the highest performing 25% of cultivars in the diver-
sity set based on PSRI values during the central senes-
cence phase (9 and 24 June 2020).

The two favourable major allele haplotypes additionally 
identified under low N availability (AX-158578529 and 
Tdurum_contig30082_197) also showed an increasing 
effect on stay-green and grain yield. Significance of the 
effects was dependent on the respective haplotype vari-
ants since there were multiple for these SNP markers.

Among the two large effect loci with favourable minor 
alleles, the haplotypes of the marker BS00067216_51 
identified under low N availability showed the most 

significant differences. Cultivars carrying the favour-
able haplotype variant showed prolonged stay-green and 
elevated grain yields at all studied N levels (Fig. 10a/b). 
Hence, the stay-green enforcement by the favourable 
haplotype variant of the marker BS00067216_51 was 
consistent and functional. When the favourable minor 
allele haplotype of the marker BS00067216_51 was 
stacked onto those of the markers AX-111,561,744 and 
AX-158,618,766, it further increased stay-green at low 
and intermediate N availability (Fig. 10c).

Allele frequencies over time reveal indirect selection for 
stay-green
Based on the present diversity set, both of the large effect 
loci with favourable minor alleles (BS00067216_51 and 
AX-111103882) show an increase in favourable allele 
frequency over the past decades. The favourable allele of 
the marker AX-111,103,882 increased from around 5% 
in the 1980 s to 24% in the 2010 s; whereas the favourable 
allele of BS00067216_51 first occurred in German culti-
vars between the year 2000 and 2009 and increased up to 
10% in the following decade. In addition, Tdurum_con-
tig30082_197 showed an increase from 25% favourable 

Fig. 7  Principal components calculated based on all 24 216 SNP markers and coloured by origin group (German/other) and decade of registration: (a) 
PC1 and PC2, (b) PC1 and PC3, and (c) PC2 and PC3
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allele frequency in the 1960 s to 70% in the 2010 s turning 
from a minor into a major allele among the German cul-
tivars in this panel.

Discussion
In this study, 221 wheat cultivars were grown under 
three different soil N levels to characterise the stay-
green behaviour of cultivars and find responsible 

genetic regions. This was done using a combination of 
UAV-based multispectral image analyses over time and 
genome-wide association studies followed by haplotype 
analyses.

The plant senescence reflectance index was identi-
fied as the most specific stay-green indicator, allowing 
for differentiation of genotypic effects due to its higher 
sensitivity to senescence-related changes in pigment 

Fig. 8  Manhattan plots showing significant marker-trait associations identified for the stay-green indicator PSRI across N levels on (a-b) 27 May = 777 
GDDs, (c-d) 9 June = 907 GDDs, and (e-f) 24 June 2020 = 1107 GDDs by GWAS model (BLINK and FarmCPU). The green line indicates the Bonferroni mul-
tiple test threshold to determine significance of associations. The dashed green line shows the false discovery rate threshold cut-off (5%). The reported 
marker-trait associations for AX-111561744 on chromosome 2D and AX-158618766 on chromosome 4B are highlighted by blue vertical lines
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composition and its higher reliability. We found genetic 
variance for stay-green and a consistent genetic corre-
lation between stay-green and grain yield at all imaging 
dates and N levels within the utilized diversity panel, 
highlighting its potential as a future breeding target. 
Haplotype analyses revealed two favourable major allele 
haplotypes present in 95% of the stay-green cultivars, 
which significantly delay senescence and increase grain 
yield. In addition, we identified a favourable minor allele 

haplotype specifically associated with stay-green under 
low N availability and capable of further increasing  
stay-green and grain yield when stacked onto the two 
favourable major allele haplotypes. Relative frequen-
cies of favourable minor alleles at several large effect 
loci showed an increase in the German cultivars over 
the past decades indicating that there may have been an 
indirect selection for stay-green alleles in the course of 
wheat breeding.

Fig. 9  The stay-green indicator PSRI for the two favourable major allele haplotypes of the markers (a) AX-111561744 and (b) AX-158618766. Haplotype 
coding: M Major allele, m Minor allele, G Guanine, C Cytosine, T Thymine, A Adenine, v Variant thereof. Imaging date: 9 June 2020 (907 GDDs). Significance 
coding: different letters indicate significant differences. *** p≤0.001
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Fig. 10 (See legend on next page.)
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PSRI identified as the most sensitive stay-green indicator
We have examined the three vegetation indices NDVI, 
NDRE and PSRI for their suitability as stay-green indi-
cators. The first two are classical vegetation and biomass 
indices used in remote sensing and the latter one has 
been developed to assess ageing processes at the leaf and 
fruit level. All three of them have been used in recent 
studies to track senescence in cereals at the canopy level 
[20, 30, 34].

In the regression analysis, canopy level NDVI was able 
to predict the chlorophyll content determined at the leaf 
scale. However, the saturation effect in the NDVI data 
seriously limits its sensitivity and precision in senescence 
tracking. Saturation is a known phenomenon with NDVI 
from closed canopies [78]. In addition, NDVI has been 
reported to be insensitive to physiological changes occur-
ring during early senescence at the leaf scale [35, 79]. 
NDRE is a common alternative to NDVI as it overcomes 
the saturation issues and offers a deeper canopy penetra-
tion and a higher sensitivity to changes in chlorophyll 
content [35, 80]. This is primarily an effect of replacing 
the reflectance in the red by reflectance in the red-edge 
spectral region, which is less prone to saturation at high 
chlorophyll contents at the leaf and canopy scale and 
more robust to variation in vegetation structure [35, 80]. 
However, the PSRI was reported to be more sensitive to 
changes in leaf reflectance occurring specifically during 
senescence [30, 57]. The index incorporates a red/blue 
ratio allowing to detect changes in the relative contents 
of chlorophylls to carotenoids taking place in the course 
of senescence which is supposed to make the PSRI more 
sensitive to senescence-specific changes [35]. Although 
the PSRI was developed to track senescence or ripening 
processes at the leaf and fruit scale, several studies have 
proven its suitability for UAV-based senescence pheno-
typing at the canopy level [81, 82].

In addition, reliability according to Bernardo [60] was 
constantly and considerably higher for PSRI than for 
NDRE (Fig. 5). Since reliability is an important criterion 
for the analysis of genotypic effects, only PSRI was con-
sidered a suitable trait for GWAS. We have therefore 
identified the PSRI as the most informative stay-green 
indicator among the vegetation indices evaluated in 
this study. Its greater sensitivity to changes in pigment 
composition and its higher reliability make it a valu-
able tool for studying senescence dynamics, especially in 

experiments on large diversity panels requiring accurate 
differentiation between genotypic effects.

In the relationship between PSRI and SPAD, it is strik-
ing that the genetic correlation was lower than the corre-
lation across N levels and the strength of the correlation 
was dependent on the respective N level (Fig. 2). Under 
low N availability, genotypic differences in chlorophyll 
content were larger and the correlation between chloro-
phyll content and PSRI was stronger. This suggests that 
under low N conditions the PSRI was more strongly 
determined by chlorophyll content, whereas at high N 
supply other genotypic differences such as pigment com-
position, leaf structure and canopy architecture weak-
ened the genetic correlation between PSRI and SPAD. 
This is in line with expectations due to different measure-
ment levels (canopy versus leaf level) and wavelengths 
used for determination of PSRI and SPAD. Moreover, 
all optical measurements have a limited linear range and 
there may be slight signs of saturation at the lower end of 
the value range of PSRI under high N availability.

High NUE can enhance stay-green performance under low 
N availability
Stay-green cultivars showed not only a lower starting 
PSRI level but also lower relative senescence rates (Fig. 
4b), which could even result in a temporary stagnation of 
the process during the central senescence phase between 
9 and 24 June 2020. Thus, senescence can show a non-
linear course [57] and does not necessarily resemble a 
sigmoidal curve as often assumed by modellers [32, 33]. 
This stay-green behaviour was more pronounced at high 
than at low N availability which is consistent with other 
studies [21, 83]. The observed N effect is also in line with 
the senescence model by Borrell [23] assuming that stay-
green is the result of the source-sink balance between N 
requirement by the grain (determined by grain number) 
and N availability (N uptake and senescence-induced 
N remobilisation processes) in the grain filling period 
when water and nutrients become scarce [24]. Grain N 
is for the most part fuelled by remobilisation of N taken 
up before flowering and stored in leaves, shoot and roots 
[82, 83]. Hence, a high N uptake and utilisation efficiency 
especially before but also after flowering can enhance 
stay-green performance and grain filling [25], particularly 
under low N availability [84]. This is also reflected by the 
higher correlation of NUE and grain yield with stay-green 
under low N availability in comparison with higher N 

(See figure on previous page.)
Fig. 10  (a) The stay-green indicator PSRI and (b) grain yield by haplotypes of the marker BS00067216_51 and N level. Haplotype coding: M = major 
allele, m = minor allele, C = cytosine, T = thymine. c PSRI by N level and different combinations of the favourable haplotype variants of the markers AX-
111561744, AX-158618766 and BS00067216_51. U-U-U = unfavourable variants of all three haplotypes; F-U-U = one favourable haplotype variant (AX-
111561744); F-F-U = two favourable haplotype variants (AX-111561744 and AX-158618766) and F-F-F = three favourable haplotype variants combined 
in the same cultivars (BS00067216_51, AX-111561744 and AX-158618766). Imaging date: 24 June 2020 (1107 GDDs). Significance coding: different letters 
indicate significant differences. *** p≤0.001 and ** p≤0.01
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levels (Fig. 6). Our results are in line with the common 
understanding that prolonged leaf greenness is associ-
ated with maintenance of photosynthetic activity and 
increased translocation of assimilates to harvested tis-
sues and is therefore positively correlated with grain yield 
[12, 13]. However, this relationship is complex and there 
are studies reporting low or no correlations between 
stay-green performance and grain yield when other fac-
tors are limiting yield formation such as low grain num-
ber [85]. A low sink strength in the source-sink balance 
between N supply and N demand can allow the plant 
to stay green while at the same time limiting grain yield 
[24, 85]. A high stay-green capacity is also not favour-
able when it is accompanied by a low N uptake efficiency 
and low N storage leading to a low grain protein content 
and consequently poor wheat quality [86]. This shows 
that grain yield and grain quality are complex polygenic 
traits in cereal crops and the underlying processes need 
to be finely tuned to ensure yield quantity and quality. 
Grain yield in cereals can be seen as the result of source-
related and sink-related traits. Source-related traits are 
traits underlying light interception and radiation use 
efficiency, e.g. root and canopy structure [87] or Calvin 
cycle efficiency, while sink-related traits are traits deter-
mining grain set and grain size, e.g. spike fertility and 
carbohydrate storage and remobilisation [87]. Stay-green 
capacity is a source-related trait forming part in this 
complex source-sink network that together with envi-
ronmental factors ultimately determines yield in wheat 
[88]. This source-sink concept originally refers to photo-
synthetic assimilation, but may be extended to include N 
metabolism.

Favourable minor allele haplotype increases stay-green 
and yield at all N levels
The favourable minor allele marker BS00067216_51 is 
particularly interesting due to its significant association 
with stay-green under low N availability and the increas-
ing effects of its favourable haplotype variant on stay-
green and grain yield at all studied N levels (Fig. 10a + b). 
The two favourable major allele markers explaining the 
largest proportions of stay-green variance across N lev-
els and showing enhancing effects on stay-green and 
grain yield in the haplotype analyses (AX-111561744 and 
AX-158618766), were found to be present in 95% of the 
stay-green cultivars in the panel (Fig. 9, Fig. S2). When 
the favourable minor allele haplotype of BS00067216_51 
was stacked onto these two favourable major allele hap-
lotypes in the same cultivar, it significantly added to 
their stay-green effects (Fig. 10c). This additive effect 
was only significant under low and intermediate N avail-
ability, revealing G×E interactions between individual 
haplotype variants and N levels. In the mixed model 
ANOVA, the overall interactive effect between cultivar 

and N level on PSRI was not significant. However, this is 
not a contradiction, as interactive effects between indi-
vidual treatment levels and haplotype variants are very 
diverse and not necessarily significant at the panel level. 
The observed G×E interactions support our understand-
ing that the stay-green phenotype relies on a combina-
tion of different underlying genes and traits, which may 
vary depending on the respective environment. The addi-
tive stay-green effect of the favourable haplotype variant 
of BS00067216_51 along with its specificity for low N 
availability makes it an interesting candidate for cross-
ing experiments. This is particularly true, as its favour-
able haplotype variant seems to be relatively new in the 
German wheat breeding germplasm having first occurred 
between the years 2000 and 2009.

SNP markers within the haplotype block of 
AX-111,561,744 have previously been associated with 
chlorophyll content, photosynthetic efficiency, biomass, 
N in aboveground biomass, NUE for biomass production 
and N uptake efficiency [77]. The finding that a genetic 
marker associated with stay-green across N levels coin-
cides with genetic regions previously identified for NUE-
related traits, highlights the major role of nitrogen in 
senescence regulation and stay-green performance not 
only when N is limiting.

Allele frequencies imply indirect selection for stay-green 
alleles over the past decades
Based on the present diversity panel, both favour-
able minor alleles corresponding to large effect loci 
(BS00067216_51 and AX-111103882) increased in fre-
quency since their first occurrence in the German wheat 
breeding germplasm. In addition, the favourable allele 
at the large effect locus of the marker Tdurum_con-
tig30082_197 even turned from a minor into a major 
allele over the past 60 years. These results suggest that 
favourable alleles shaping the stay-green behaviour of 
modern German wheat cultivars were introduced and 
possibly indirectly selected for over the past decades. 
This probably happened by selecting for higher and more 
stable yields. However, the conclusions drawn here are 
only based on the utilised diversity panel and may not 
reflect the whole picture.

Limitations
One of the most holistic ways of characterising genotypic 
senescence development is to model senescence kinetics 
and quantify total plant greenness from heading to matu-
rity [57]. However, due to the sensitivity of image acquisi-
tion methods to weather conditions, high quality image 
data were not available in sufficiently high temporal res-
olution for the crucial period to model cultivar-specific 
senescence development. As an approximation, we there-
fore estimated the genotypic effects on the stay-green 
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indicator PSRI across the central senescence period (9 
and 24 June 2020).

Since total plant greenness from heading to matu-
rity could not be determined, the question arose as to 
whether the cultivar effects needed to be corrected for 
individual deviations in heading dates. However, heading 
date does not immediately determine maturity date with 
a correlation ranging from r = 0.75 to r = 0.86 based on a 
study on adapted sets of cultivars [89]. Moreover, in the 
present diversity set maturity groups are largely overlap-
ping with the population structure arising from different 
eras of plant breeding in different geographic locations. 
However, the population structure has already been 
accounted for in the GWAS by mixed-method model-
ling and the use of principal components as covariates. 
Since a double correction must be avoided [90], no addi-
tional correction for heading date was performed in this 
study. Regular rainfall and the absence of pronounced 
heat periods throughout the entire data collection phase 
did not make any adjustments due to weather conditions 
necessary.

Of the six large effect loci identified by the GWAS on 
the 2020 dataset, two (33%) had already been found in 
the reference year 2019. The limited overlap was to be 
expected because not only consecutive years but also 
swapping fields, shifting imaging dates relative to plant 
development, slightly differing N concentrations at the 
low N level, and minor deviations in agricultural manage-
ment procedures create a different environment for the 
plants. In addition, different camera systems were used 
(MicaSense RedEdge Dual in 2020 and MicaSense Red-
Edge-MX in 2019) and therefore the PSRI had to be cal-
culated using different NIR bands in 2020 (740 nm) and 
2019 (842 nm).

Relevance of the presented results for future studies
We have identified favourable major allele haplotypes 
present in 95% of stay-green cultivars as well as a favour-
able minor allele haplotype that was shown to further 
improve stay-green performance when the favourable 
haplotype variants were combined in a cultivar. The addi-
tive behaviour of haplotype effects is in line with our 
understanding of stay-green being under complex genetic 
control [20, 85, 91]. In previous studies, genetic regions 
identified for stay-green have been shown to coincide 
with loci associated with phenology, growth, plant height, 
and yield [19, 86]. A gene ontology enrichment analysis 
conducted on candidate genes located within stay-green 
quantitative trait loci (QTL) in wheat indicated an associ-
ation of these genes with biological processes such as leaf 
senescence, ethylene response, and apoptosis and with 
functions mainly related to nutrient reservoir activity 
[20]. Furthermore, a comparative transcriptome analysis 
has shown that genes for leaf senescence, photosynthesis, 

chlorophyll metabolism and antioxidative enzyme activ-
ity were upregulated during leaf senescence in the stay-
green wheat cultivars compared to non-stay-green 
cultivars [92]. These results imply that a stay-green phe-
notype arises from a large number of underlying genes 
and traits acting at different levels and time points dur-
ing the senescence process [19]. This can be exploited by 
stacking multiple favourable alleles in marker-assisted 
crossing experiments. The stay-green haplotypes identi-
fied in this study can serve as a basis for stacking favour-
able minor allele haplotypes onto favourable major allele 
haplotypes.

The G×E interactions observed in this study imply 
that some of the identified genetic regions may convey a 
specific benefit under certain environmental conditions 
whereas others may have a robust effect across differ-
ent environments [19]. Therefore, a more differentiated 
understanding of the genetic and physiological basis of 
stay-green is required to ascertain which genetic regions 
can further improve stay-green performance across dif-
ferent environments or under specific environmental 
conditions. With regard to N availability, the newly iden-
tified stay-green haplotypes can contribute to a more in-
depth understanding by guiding the identification of the 
underlying genes.

Conclusions
By combining multispectral image analyses with genomic 
tools, we identified a favourable minor allele haplotype 
with large effect specifically associated with stay-green 
under low N availability. Cultivars carrying the favour-
able haplotype variant showed significantly higher stay-
green capacities and grain yields at all studied N levels. 
In addition, our study identified two favourable major 
allele haplotypes present in the majority (95%) of stay-
green cultivars. When all three haplotypes are combined 
in a cultivar, the favourable minor allele haplotype sig-
nificantly adds to the stay-green effects of the favour-
able major allele haplotypes. This additive effect was only 
significant under low and intermediate N availability. 
These findings support our understanding that the stay-
green phenotype arises from a combination of multiple 
underlying genes and traits, which may vary depending 
on the respective environment. Our results confirm that 
stay-green may be a suitable breeding target to develop 
high-yielding wheat cultivars that are either specifically 
adapted to certain conditions (e.g. low N availability) or 
stable across a range of environments. The presented 
relative allele frequencies suggest that the stay-green trait 
has already been indirectly selected for during the past 
decades of wheat breeding. Novel wheat cultivars with 
enhanced stay-green performance due to a high NUE 
have the potential to contribute to security as well as to 
sustainability of wheat production by ensuring yields in 
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low-input systems and allowing for a reduction in N fer-
tilisation in high input systems.

Our results show that the utilised UAV-based mul-
tispectral phenotyping method is capable of precisely 
quantifying and differentiating genotypic effects on stay-
green in a large diversity panel under different treatment 
conditions over time. The choice of a sensitive and reli-
able stay-green indicator was shown to be of particular 
importance. The utilised combination of image analyses 
and GWAS is a highly dynamic field and particularly the 
use of deep learning approaches has the potential to fur-
ther promote crucial advances in dynamic digital pheno-
typing [93]. 
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