001047611 001__ 1047611 001047611 005__ 20251217202225.0 001047611 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04413 001047611 037__ $$aFZJ-2025-04413 001047611 041__ $$aEnglish 001047611 1001_ $$0P:(DE-Juel1)191034$$aYildiz, Erenus$$b0$$ufzj 001047611 245__ $$a3D Reconstruction of Cassava Roots Using COLMAP 001047611 260__ $$c2025 001047611 300__ $$a46p 001047611 3367_ $$2DRIVER$$areport 001047611 3367_ $$2ORCID$$aREPORT 001047611 3367_ $$010$$2EndNote$$aReport 001047611 3367_ $$2DataCite$$aOutput Types/Report 001047611 3367_ $$2BibTeX$$aTECHREPORT 001047611 3367_ $$0PUB:(DE-HGF)15$$2PUB:(DE-HGF)$$aInternal Report$$bintrep$$mintrep$$s1765971873_20224 001047611 520__ $$aCassava (Manihot esculenta) is an important crop for food security in tropical and subtropical regions, with roots containing up to 85% starch on a dry weight basis [25]. Understanding root system architecture is essential for breeding programs aimed at improving yield and stress tolerance [1]. Traditional 2D imaging methods for root phenotyping have limitations in capturing threedimensional root structures, leading to incomplete trait measurements [28, 8]. While advanced 3D methods like DIRT/3D 2.0 exist [14], they require specialized equipment that may not be accessible to all research facilities. This laboratory work implemented a cost-effective 3D reconstruction pipeline using standard DSLR cameras and open-source software (REMBG, COLMAP) to extract morphological traits from cassava roots. The pipeline combined deep learning-based segmentation with structure from motion techniques to analyze 1039 cassava root system acquisitions from plants aged 5-10 weeks collected at the Rayong Field Crops Research Center in Thailand, achieving 62% reconstruction success (644 successfully reconstructed roots). 001047611 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001047611 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0 001047611 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b1$$eContributor$$ufzj 001047611 7001_ $$0P:(DE-Juel1)156560$$aWojciechowski, Tobias$$b2$$eContributor$$ufzj 001047611 7001_ $$0P:(DE-Juel1)165832$$aBoeckem, Vera$$b3$$eContributor$$ufzj 001047611 8564_ $$uhttps://juser.fz-juelich.de/record/1047611/files/3D%20Reconstruction%20of%20Cassava%20Roots%20-%20LabReport.pdf$$yOpenAccess 001047611 909CO $$ooai:juser.fz-juelich.de:1047611$$popenaire$$popen_access$$pVDB$$pdriver 001047611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191034$$aForschungszentrum Jülich$$b0$$kFZJ 001047611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b1$$kFZJ 001047611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156560$$aForschungszentrum Jülich$$b2$$kFZJ 001047611 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165832$$aForschungszentrum Jülich$$b3$$kFZJ 001047611 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001047611 9141_ $$y2025 001047611 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001047611 920__ $$lyes 001047611 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0 001047611 980__ $$aintrep 001047611 980__ $$aVDB 001047611 980__ $$aUNRESTRICTED 001047611 980__ $$aI:(DE-Juel1)IAS-8-20210421 001047611 9801_ $$aFullTexts