001     1047611
005     20251217202225.0
024 7 _ |a 10.34734/FZJ-2025-04413
|2 datacite_doi
037 _ _ |a FZJ-2025-04413
041 _ _ |a English
100 1 _ |a Yildiz, Erenus
|0 P:(DE-Juel1)191034
|b 0
|u fzj
245 _ _ |a 3D Reconstruction of Cassava Roots Using COLMAP
260 _ _ |c 2025
300 _ _ |a 46p
336 7 _ |a report
|2 DRIVER
336 7 _ |a REPORT
|2 ORCID
336 7 _ |a Report
|0 10
|2 EndNote
336 7 _ |a Output Types/Report
|2 DataCite
336 7 _ |a TECHREPORT
|2 BibTeX
336 7 _ |a Internal Report
|b intrep
|m intrep
|0 PUB:(DE-HGF)15
|s 1765971873_20224
|2 PUB:(DE-HGF)
520 _ _ |a Cassava (Manihot esculenta) is an important crop for food security in tropical and subtropical regions, with roots containing up to 85% starch on a dry weight basis [25]. Understanding root system architecture is essential for breeding programs aimed at improving yield and stress tolerance [1]. Traditional 2D imaging methods for root phenotyping have limitations in capturing threedimensional root structures, leading to incomplete trait measurements [28, 8]. While advanced 3D methods like DIRT/3D 2.0 exist [14], they require specialized equipment that may not be accessible to all research facilities. This laboratory work implemented a cost-effective 3D reconstruction pipeline using standard DSLR cameras and open-source software (REMBG, COLMAP) to extract morphological traits from cassava roots. The pipeline combined deep learning-based segmentation with structure from motion techniques to analyze 1039 cassava root system acquisitions from plants aged 5-10 weeks collected at the Rayong Field Crops Research Center in Thailand, achieving 62% reconstruction success (644 successfully reconstructed roots).
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 1
|e Contributor
|u fzj
700 1 _ |a Wojciechowski, Tobias
|0 P:(DE-Juel1)156560
|b 2
|e Contributor
|u fzj
700 1 _ |a Boeckem, Vera
|0 P:(DE-Juel1)165832
|b 3
|e Contributor
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1047611/files/3D%20Reconstruction%20of%20Cassava%20Roots%20-%20LabReport.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047611
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156560
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165832
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a intrep
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21