| 001 | 1047611 | ||
| 005 | 20251217202225.0 | ||
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04413 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04413 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Yildiz, Erenus |0 P:(DE-Juel1)191034 |b 0 |u fzj |
| 245 | _ | _ | |a 3D Reconstruction of Cassava Roots Using COLMAP |
| 260 | _ | _ | |c 2025 |
| 300 | _ | _ | |a 46p |
| 336 | 7 | _ | |a report |2 DRIVER |
| 336 | 7 | _ | |a REPORT |2 ORCID |
| 336 | 7 | _ | |a Report |0 10 |2 EndNote |
| 336 | 7 | _ | |a Output Types/Report |2 DataCite |
| 336 | 7 | _ | |a TECHREPORT |2 BibTeX |
| 336 | 7 | _ | |a Internal Report |b intrep |m intrep |0 PUB:(DE-HGF)15 |s 1765971873_20224 |2 PUB:(DE-HGF) |
| 520 | _ | _ | |a Cassava (Manihot esculenta) is an important crop for food security in tropical and subtropical regions, with roots containing up to 85% starch on a dry weight basis [25]. Understanding root system architecture is essential for breeding programs aimed at improving yield and stress tolerance [1]. Traditional 2D imaging methods for root phenotyping have limitations in capturing threedimensional root structures, leading to incomplete trait measurements [28, 8]. While advanced 3D methods like DIRT/3D 2.0 exist [14], they require specialized equipment that may not be accessible to all research facilities. This laboratory work implemented a cost-effective 3D reconstruction pipeline using standard DSLR cameras and open-source software (REMBG, COLMAP) to extract morphological traits from cassava roots. The pipeline combined deep learning-based segmentation with structure from motion techniques to analyze 1039 cassava root system acquisitions from plants aged 5-10 weeks collected at the Rayong Field Crops Research Center in Thailand, achieving 62% reconstruction success (644 successfully reconstructed roots). |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 650 | 2 | 7 | |a Instrument and Method Development |0 V:(DE-MLZ)SciArea-220 |2 V:(DE-HGF) |x 0 |
| 700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 1 |e Contributor |u fzj |
| 700 | 1 | _ | |a Wojciechowski, Tobias |0 P:(DE-Juel1)156560 |b 2 |e Contributor |u fzj |
| 700 | 1 | _ | |a Boeckem, Vera |0 P:(DE-Juel1)165832 |b 3 |e Contributor |u fzj |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1047611/files/3D%20Reconstruction%20of%20Cassava%20Roots%20-%20LabReport.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047611 |p openaire |p open_access |p VDB |p driver |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)191034 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129394 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156560 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165832 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
| 980 | _ | _ | |a intrep |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|