001     1047673
005     20251202203135.0
024 7 _ |a 10.36227/techrxiv.176162139.98868081/v1
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04448
|2 datacite_doi
037 _ _ |a FZJ-2025-04448
100 1 _ |a Chava, Phanish
|0 P:(DE-Juel1)196006
|b 0
245 _ _ |a Evaluation of cryogenic model libraries for FDSOI CMOS transistors
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1764677849_11501
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Scalable quantum computers demand innovative solutions to tackle the wiring bottleneck and control an increasing number of qubits. Cryogenic electronics based on CMOS technologies are promising candidates which can operate down to deep-cryogenic temperatures and act as a communication and control interface to the quantum layer. However, the performance of transistors used in these circuits is altered significantly when cooling from room temperature to cryogenic temperatures, which motivates accurate cryogenic modeling of transistors. In this paper, we report on a cryogenic simulation library tailored specifically to fully depleted silicon-on-insulator (FDSOI) transistors. We validated the accuracy of our preliminary model library by comparing simulations at both the device and circuit levels with experimental measurements from single transistors, ring oscillators, and a transimpedance amplifier. Our models effectively capture the DC behavior across the temperature range from 8 K to room temperature.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alius, Heidrun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Buehler, Jonas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cabrera-Galicia, Alfonso R
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Degenhardt, Carsten
|0 P:(DE-Juel1)167475
|b 4
|u fzj
700 1 _ |a Gneiting, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Harff, Markus
|0 P:(DE-Juel1)164820
|b 6
|u fzj
700 1 _ |a Heide, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Javorka, Peter
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kessler, Matthias
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lederer, Maximilian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lehmann, Steffen
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Simon, Maik
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Su, Meng
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 14
|u fzj
700 1 _ |a Waassen, Stefan Van
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Witt, Christian
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zetzsche, Dennis
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.36227/techrxiv.176162139.98868081/v1
856 4 _ |u https://juser.fz-juelich.de/record/1047673/files/Paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047673
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)164820
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)171680
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21