001047681 001__ 1047681
001047681 005__ 20260107202515.0
001047681 037__ $$aFZJ-2025-04456
001047681 041__ $$aEnglish
001047681 1001_ $$0P:(DE-HGF)0$$aTagliabue, Giulia$$b0$$eCorresponding author
001047681 1112_ $$aAmerican Geosciences Union$$cNew Orleans$$d2025-12-15 - 2025-12-19$$gAGU 2025$$wUSA
001047681 245__ $$aAirFloX: Bridging Scales for SIF Calibration and Validation in Support of FLEX
001047681 260__ $$c2025
001047681 3367_ $$033$$2EndNote$$aConference Paper
001047681 3367_ $$2DataCite$$aOther
001047681 3367_ $$2BibTeX$$aINPROCEEDINGS
001047681 3367_ $$2DRIVER$$aconferenceObject
001047681 3367_ $$2ORCID$$aLECTURE_SPEECH
001047681 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1767810340_17004$$xOther
001047681 520__ $$aThe upcoming FLuorescence EXplorer (FLEX) mission of the European Space Agency (ESA) will provide global, high-resolution maps of sun-induced chlorophyll fluorescence (SIF), enhancing the monitoring of photosynthetic activity. Accurate calibration and validation (Cal/Val) of FLEX products through independent in-situ measurements is essential to ensure reliable SIF estimates. While tower-based systems offer unattended, continuous measurements, they are not suitable for spatially heterogeneous landscapes. Airborne systems offer broad spatial coverage and capture spatial heterogeneity, but they are costly and have limited temporal resolution. Unmanned aerial systems (UAS) are a lower-cost alternative, with the potential to bridge the spatial and temporal gap between ground-based and satellite observations. In this context, we present AirFloX: a novel, modular, spectroscopy system deployable on UAS or helicopters capable of measuring SIF and high-resolution reflectance. AirFloX is a non-imaging spectroscopy system consisting of two point spectrometers (Ocean Insight, USA) connected to bifurcated fibre optics switching between the downwelling irradiance and upwelling radiance. The two spectrometers complement each other having different spectral range and resolution for measuring both SIF and reflectance. The 4 kg payload can be mounted on commercial UAS platforms, and a dedicated graphical user interface allows to customize the acquisition. AirFloX was extensively tested during two ESA-funded field campaigns in May and June 2025 in agricultural and forested areas in Tuscany, Italy. The campaigns aimed to evaluate different strategies for the validation of the SIF products of the upcoming FLEX mission. To this end, we implemented sampling schemes based on optimisation methods designed to find the optimal locations of the sampling points maximising their spatial representativeness. Multi-scale SIF measurements were collected using ground-based systems (FloX) and airborne systems (AirFloX) mounted on two UAS and a helicopter (HELiPOD system), enabling to cross-compare the results at different scales. In this contribution we present the first results of these campaigns, discuss associated challenges, and outline implications for the Cal/Val of SIF satellite products.
001047681 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001047681 65017 $$0V:(DE-MLZ)GC-170-2016$$2V:(DE-HGF)$$aEarth, Environment and Cultural Heritage$$x0
001047681 7001_ $$0P:(DE-HGF)0$$aRossini, Micol$$b1
001047681 7001_ $$0P:(DE-HGF)0$$aGarzonio, Roberto$$b2
001047681 7001_ $$0P:(DE-HGF)0$$aJulitta, Tommaso$$b3
001047681 7001_ $$0P:(DE-Juel1)145906$$aBurkart, Andreas$$b4
001047681 7001_ $$0P:(DE-Juel1)186921$$aBendig, Juliane$$b5$$ufzj
001047681 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b6$$ufzj
001047681 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b7$$ufzj
001047681 7001_ $$0P:(DE-HGF)0$$aCogliati, Sergio$$b8
001047681 7001_ $$0P:(DE-HGF)0$$aChierichetti, Pietro$$b9
001047681 7001_ $$0P:(DE-HGF)0$$aVignali, Luigi$$b10
001047681 7001_ $$0P:(DE-HGF)0$$aPanigada, Cinzia$$b11
001047681 7001_ $$0P:(DE-HGF)0$$aPätzold, Falk$$b12
001047681 7001_ $$0P:(DE-HGF)0$$aLampert, Astrid$$b13
001047681 7001_ $$0P:(DE-HGF)0$$aTudoroiu, Marin$$b14
001047681 7001_ $$0P:(DE-HGF)0$$aColombo, Roberto$$b15
001047681 8564_ $$uhttps://agu.confex.com/agu/agu25/meetingapp.cgi/Paper/1980574
001047681 909CO $$ooai:juser.fz-juelich.de:1047681$$pVDB
001047681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186921$$aForschungszentrum Jülich$$b5$$kFZJ
001047681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b6$$kFZJ
001047681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b7$$kFZJ
001047681 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001047681 920__ $$lyes
001047681 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001047681 980__ $$aconf
001047681 980__ $$aVDB
001047681 980__ $$aI:(DE-Juel1)IBG-2-20101118
001047681 980__ $$aUNRESTRICTED