001047696 001__ 1047696
001047696 005__ 20260108204821.0
001047696 0247_ $$2doi$$a10.1016/j.isprsjprs.2025.07.015
001047696 0247_ $$2ISSN$$a0924-2716
001047696 0247_ $$2ISSN$$a1872-8235
001047696 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04462
001047696 037__ $$aFZJ-2025-04462
001047696 082__ $$a550
001047696 1001_ $$0P:(DE-Juel1)206952$$aKröber, Felix$$b0$$eCorresponding author$$ufzj
001047696 245__ $$aOn-demand, semantic EO data cubes – knowledge-based, semantic querying of multimodal data for mesoscale analyses anywhere on Earth
001047696 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
001047696 3367_ $$2DRIVER$$aarticle
001047696 3367_ $$2DataCite$$aOutput Types/Journal article
001047696 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767813983_10642
001047696 3367_ $$2BibTeX$$aARTICLE
001047696 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047696 3367_ $$00$$2EndNote$$aJournal Article
001047696 520__ $$aWith the daily increasing amount of available Earth Observation (EO) data, the importance of processing frameworks that allow users to focus on the actual analysis of the data instead of the technical and conceptual complexity of data access and integration is growing. In this context, we present a Python-based implementation of ad-hoc data cubes to perform big EO data analysis in a few lines of code. In contrast to existing data cube frameworks, our semantic, knowledge-based approach enables data to be processed beyond its simple numerical representation, with structured integration and communication of expert knowledge from the relevant domains. The technical foundations for this are threefold: Firstly, on-demand fetching of data in cloud-optimized formats via SpatioTemporal Asset Catalog (STAC) standardized metadata to regularized three-dimensional data cubes. Secondly, provision of a semantic language along with an analysis structure that enables to address data and create knowledge-based models. And thirdly, chunking and parallelization mechanisms to execute the created models in a scalable and efficient manner. From the user’s point of view, big EO data archives can be analyzed both on local, commercially available devices and on cloud-based processing infrastructures without being tied to a specific platform. Visualization options for models enable effective exchange with end users and domain experts regarding the design of analyses. The concrete benefits of the presented framework are demonstrated using two application examples relevant for environmental monitoring: querying cloud-free data and analyzing the extent of forest disturbance areas.
001047696 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001047696 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047696 7001_ $$00000-0002-0473-1260$$aSudmanns, Martin$$b1
001047696 7001_ $$00000-0003-0554-734X$$aAbad, Lorena$$b2
001047696 7001_ $$00000-0002-5473-3344$$aTiede, Dirk$$b3
001047696 773__ $$0PERI:(DE-600)2012663-3$$a10.1016/j.isprsjprs.2025.07.015$$gVol. 228, p. 552 - 565$$p552 - 565$$tISPRS journal of photogrammetry and remote sensing$$v228$$x0924-2716$$y2025
001047696 8564_ $$uhttps://juser.fz-juelich.de/record/1047696/files/1-s2.0-S092427162500276X-main.pdf$$yOpenAccess
001047696 909CO $$ooai:juser.fz-juelich.de:1047696$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206952$$aForschungszentrum Jülich$$b0$$kFZJ
001047696 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001047696 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
001047696 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047696 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bISPRS J PHOTOGRAMM : 2022$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bISPRS J PHOTOGRAMM : 2022$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047696 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001047696 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001047696 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001047696 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001047696 9801_ $$aFullTexts
001047696 980__ $$ajournal
001047696 980__ $$aVDB
001047696 980__ $$aUNRESTRICTED
001047696 980__ $$aI:(DE-Juel1)IBG-2-20101118