001047697 001__ 1047697
001047697 005__ 20260107202516.0
001047697 0247_ $$2doi$$a10.1080/01431161.2025.2549132
001047697 0247_ $$2ISSN$$a0143-1161
001047697 0247_ $$2ISSN$$a1366-5901
001047697 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04463
001047697 037__ $$aFZJ-2025-04463
001047697 041__ $$aEnglish
001047697 082__ $$a620
001047697 1001_ $$00000-0002-9091-3684$$aMajor, David$$b0$$eCorresponding author
001047697 245__ $$aA holistic approach for multi-spectral Sentinel-2 super-resolution and spectral evaluation
001047697 260__ $$aLondon$$bTaylor & Francis$$c2025
001047697 3367_ $$2DRIVER$$aarticle
001047697 3367_ $$2DataCite$$aOutput Types/Journal article
001047697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767811276_18563
001047697 3367_ $$2BibTeX$$aARTICLE
001047697 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047697 3367_ $$00$$2EndNote$$aJournal Article
001047697 520__ $$aImages provided by the European Copernicus Sentinel-2 satellites are valuable and easily accessible sources of remote sensing data for tasks across various fields. These data have a high spectral and temporal resolution, but a rather low spatial resolution, limiting their applicability for many tasks. In agricultural tasks, such as crop monitoring of small land parcels, the use of these data for fine-scale analysis is contingent upon the enhancement of spatial resolution while maintaining spectral fidelity. In this work, we propose a comprehensive single-image super-resolution reconstruction workflow that ensures both properties and is divided into two parts. First, a deep learning-based super-resolution reconstruction approach is applied to improve the spatial resolution of multi-spectral Sentinel-2 images to 2.5 m. For this purpose, a novel method is applied to achieve super-resolution of multiple spectral bands where associated real-word reference data is only partially available. It learns to increase the spatial resolution while preserving spectral accuracy of 10 m bands using high-resolution data from an auxiliary satellite with spectral correspondence, and 20 m bands without reference data using synthetic Sentinel-2 pairs. Second, the suitability of the method to subsequent agricultural tasks is evaluated by measuring the discrepancy between the super-resolved and reference data through a novel spectral knowledge-based validation method. This method leverages mappings of reflectances to spectral categories that enable assessing the spectral fidelity of super-resolved outputs, which is complementary to existing image quality assessment metrics, but with greater depth. The promising spectral validation results suggest that our super-resolution reconstruction pipeline has a great potential for agricultural applications.
001047697 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001047697 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047697 7001_ $$00000-0001-7188-6564$$aHorváth, Zsolt$$b1
001047697 7001_ $$0P:(DE-Juel1)206952$$aKröber, Felix$$b2$$ufzj
001047697 7001_ $$00000-0002-3334-5350$$aAugustin, Hannah$$b3
001047697 7001_ $$00000-0002-0473-1260$$aSudmanns, Martin$$b4
001047697 7001_ $$00009-0005-1564-8525$$aŠevčík, Petr$$b5
001047697 7001_ $$00000-0001-5196-9944$$aBaraldi, Andrea$$b6
001047697 7001_ $$00000-0002-2300-2661$$aBerg, Astrid$$b7
001047697 7001_ $$00000-0002-2481-6720$$aCornel, Daniel$$b8
001047697 7001_ $$00000-0002-5473-3344$$aTiede, Dirk$$b9
001047697 773__ $$0PERI:(DE-600)1497529-4$$a10.1080/01431161.2025.2549132$$gVol. 46, no. 20, p. 7437 - 7464$$n20$$p7437 - 7464$$tInternational journal of remote sensing$$v46$$x0143-1161$$y2025
001047697 8564_ $$uhttps://juser.fz-juelich.de/record/1047697/files/A%20holistic%20approach%20for%20multi-spectral%20Sentinel-2%20super-resolution%20and%20spectral%20evaluation.pdf$$yOpenAccess
001047697 909CO $$ooai:juser.fz-juelich.de:1047697$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206952$$aForschungszentrum Jülich$$b2$$kFZJ
001047697 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001047697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
001047697 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001047697 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047697 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001047697 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-21$$wger
001047697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001047697 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001047697 980__ $$ajournal
001047697 980__ $$aVDB
001047697 980__ $$aUNRESTRICTED
001047697 980__ $$aI:(DE-Juel1)IBG-2-20101118
001047697 9801_ $$aFullTexts