001     1047697
005     20260107202516.0
024 7 _ |a 10.1080/01431161.2025.2549132
|2 doi
024 7 _ |a 0143-1161
|2 ISSN
024 7 _ |a 1366-5901
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04463
|2 datacite_doi
037 _ _ |a FZJ-2025-04463
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Major, David
|0 0000-0002-9091-3684
|b 0
|e Corresponding author
245 _ _ |a A holistic approach for multi-spectral Sentinel-2 super-resolution and spectral evaluation
260 _ _ |a London
|c 2025
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767811276_18563
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Images provided by the European Copernicus Sentinel-2 satellites are valuable and easily accessible sources of remote sensing data for tasks across various fields. These data have a high spectral and temporal resolution, but a rather low spatial resolution, limiting their applicability for many tasks. In agricultural tasks, such as crop monitoring of small land parcels, the use of these data for fine-scale analysis is contingent upon the enhancement of spatial resolution while maintaining spectral fidelity. In this work, we propose a comprehensive single-image super-resolution reconstruction workflow that ensures both properties and is divided into two parts. First, a deep learning-based super-resolution reconstruction approach is applied to improve the spatial resolution of multi-spectral Sentinel-2 images to 2.5 m. For this purpose, a novel method is applied to achieve super-resolution of multiple spectral bands where associated real-word reference data is only partially available. It learns to increase the spatial resolution while preserving spectral accuracy of 10 m bands using high-resolution data from an auxiliary satellite with spectral correspondence, and 20 m bands without reference data using synthetic Sentinel-2 pairs. Second, the suitability of the method to subsequent agricultural tasks is evaluated by measuring the discrepancy between the super-resolved and reference data through a novel spectral knowledge-based validation method. This method leverages mappings of reflectances to spectral categories that enable assessing the spectral fidelity of super-resolved outputs, which is complementary to existing image quality assessment metrics, but with greater depth. The promising spectral validation results suggest that our super-resolution reconstruction pipeline has a great potential for agricultural applications.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Horváth, Zsolt
|0 0000-0001-7188-6564
|b 1
700 1 _ |a Kröber, Felix
|0 P:(DE-Juel1)206952
|b 2
|u fzj
700 1 _ |a Augustin, Hannah
|0 0000-0002-3334-5350
|b 3
700 1 _ |a Sudmanns, Martin
|0 0000-0002-0473-1260
|b 4
700 1 _ |a Ševčík, Petr
|0 0009-0005-1564-8525
|b 5
700 1 _ |a Baraldi, Andrea
|0 0000-0001-5196-9944
|b 6
700 1 _ |a Berg, Astrid
|0 0000-0002-2300-2661
|b 7
700 1 _ |a Cornel, Daniel
|0 0000-0002-2481-6720
|b 8
700 1 _ |a Tiede, Dirk
|0 0000-0002-5473-3344
|b 9
773 _ _ |a 10.1080/01431161.2025.2549132
|g Vol. 46, no. 20, p. 7437 - 7464
|0 PERI:(DE-600)1497529-4
|n 20
|p 7437 - 7464
|t International journal of remote sensing
|v 46
|y 2025
|x 0143-1161
856 4 _ |u https://juser.fz-juelich.de/record/1047697/files/A%20holistic%20approach%20for%20multi-spectral%20Sentinel-2%20super-resolution%20and%20spectral%20evaluation.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047697
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)206952
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21