001     1047705
005     20260108204821.0
024 7 _ |a 10.1002/tpg2.70146
|2 doi
024 7 _ |a 1940-3372
|2 ISSN
024 7 _ |a 0011-183X
|2 ISSN
024 7 _ |a 1435-0653
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04471
|2 datacite_doi
037 _ _ |a FZJ-2025-04471
082 _ _ |a 640
100 1 _ |a Sciara, Giuseppe
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Genetic dissection of the root system architecture QTLome and its relationship with early shoot development, breeding and adaptation in durum wheat
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767862269_21098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Root system architecture (RSA), shoot architecture, and shoot-to-root biomass allocation are critical for optimizing crop water and nutrient capture and ultimately grain yield. Nevertheless, only a few studies adequately dissected the genetic basis of RSA and its relationship to shoot development. Herein, we dissected at a high level of details the RSA–shoot QTLome in a panel of 194 elite durum wheat (Triticum turgidum ssp. durum Desf.) varieties from worldwide adopting high-throughput phenotyping platform (HTPP) and genome-wide association study (GWAS). Plants were grown in controlled conditions up to the seventh leaf appearance (late tillering) in the GROWSCREEN-Rhizo, a rhizobox platform integrated with automated monochrome camera for root imaging, which allowed us to phenotype the panel for 35 shoot and root architectural traits, including seminal, nodal, and lateral root traits, width and depth, leaf area, leaf, and tiller number on a time-course base. GWAS identified 180 quantitative trait loci (QTLs) (−log p-value ≥ 4) grouped in 39 QTL clusters. Among those, 10, 11, and 10 QTL clusters were found for seminal, nodal, and lateral root systems. Deep rooting, a key trait for adaptation to water limiting conditions, was controlled by three major QTLs on chromosomes 2A, 6A, and 7A. Haplotype distribution revealed contrasting selection patterns between the ICARDA rainfed and CIMMYT irrigated breeding programs, respectively. These results provide valuable insights toward a better understanding of the RSA QTLome and a more effective deployment of beneficial root haplotypes to enhance durum wheat yield in different environmental conditions.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bozzoli, Matteo
|0 0000-0002-4599-5334
|b 1
700 1 _ |a Fiorani, Fabio
|0 P:(DE-Juel1)143649
|b 2
700 1 _ |a Nagel, Kerstin A.
|0 P:(DE-Juel1)129373
|b 3
700 1 _ |a Ameer, Amina
|b 4
700 1 _ |a Salvi, Silvio
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tuberosa, Roberto
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Maccaferri, Marco
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/tpg2.70146
|g Vol. 18, no. 4, p. e70146
|0 PERI:(DE-600)2440458-5
|n 4
|p e70146
|t The plant genome
|v 18
|y 2025
|x 1940-3372
856 4 _ |u https://juser.fz-juelich.de/record/1047705/files/The%20Plant%20Genome%20-%202025%20-%20Sciara%20-%20Genetic%20dissection%20of%20the%20root%20system%20architecture%20QTLome%20and%20its%20relationship%20with.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047705
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129373
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-18
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:07:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:07:35Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT GENOME-US : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21