001048103 001__ 1048103
001048103 005__ 20251120202158.0
001048103 0247_ $$2doi$$a10.1038/s42004-025-01407-3
001048103 037__ $$aFZJ-2025-04495
001048103 082__ $$a540
001048103 1001_ $$0P:(DE-Juel1)201578$$aUmmethala, Govind$$b0
001048103 245__ $$aReal-time visualisation of fast nanoscale processes during liquid reagent mixing by liquid cell transmission electron microscopy
001048103 260__ $$bSpringer Nature$$c2025
001048103 3367_ $$2DRIVER$$aarticle
001048103 3367_ $$2DataCite$$aOutput Types/Journal article
001048103 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763639778_25919
001048103 3367_ $$2BibTeX$$aARTICLE
001048103 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048103 3367_ $$00$$2EndNote$$aJournal Article
001048103 520__ $$aLiquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.
001048103 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001048103 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048103 7001_ $$0P:(DE-HGF)0$$aJada, Ravi$$b1
001048103 7001_ $$0P:(DE-HGF)0$$aDutta-Gupta, Shourya$$b2
001048103 7001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b3
001048103 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b4
001048103 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b5
001048103 7001_ $$00000-0002-3515-4195$$aHooley, Robert$$b6
001048103 7001_ $$aSun, Hongyu$$b7
001048103 7001_ $$00000-0002-5597-7914$$aPérez Garza, H. Hugo$$b8
001048103 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A$$b9
001048103 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b10$$eCorresponding author
001048103 7001_ $$00000-0002-0322-8137$$aMalladi, Sai Rama Krishna$$b11$$eCorresponding author
001048103 773__ $$0PERI:(DE-600)2929562-2$$a10.1038/s42004-025-01407-3$$gVol. 8, no. 1, p. 8$$n1$$p8$$tCommunications chemistry$$v8$$x2399-3669$$y2025
001048103 8564_ $$uhttps://juser.fz-juelich.de/record/1048103/files/s42004-025-01407-3.pdf$$yRestricted
001048103 909CO $$ooai:juser.fz-juelich.de:1048103$$pVDB
001048103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201578$$aForschungszentrum Jülich$$b0$$kFZJ
001048103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b3$$kFZJ
001048103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b4$$kFZJ
001048103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b5$$kFZJ
001048103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b9$$kFZJ
001048103 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b9$$kRWTH
001048103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
001048103 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001048103 9141_ $$y2025
001048103 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN CHEM : 2022$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:12Z
001048103 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:12Z
001048103 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:12Z
001048103 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:36:12Z
001048103 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN CHEM : 2022$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-10
001048103 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-10
001048103 920__ $$lyes
001048103 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001048103 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
001048103 980__ $$ajournal
001048103 980__ $$aVDB
001048103 980__ $$aI:(DE-Juel1)IET-1-20110218
001048103 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001048103 980__ $$aUNRESTRICTED