001     1048103
005     20251120202158.0
024 7 _ |a 10.1038/s42004-025-01407-3
|2 doi
037 _ _ |a FZJ-2025-04495
082 _ _ |a 540
100 1 _ |a Ummethala, Govind
|0 P:(DE-Juel1)201578
|b 0
245 _ _ |a Real-time visualisation of fast nanoscale processes during liquid reagent mixing by liquid cell transmission electron microscopy
260 _ _ |c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763639778_25919
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jada, Ravi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dutta-Gupta, Shourya
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Park, Junbeom
|0 P:(DE-Juel1)180853
|b 3
700 1 _ |a Tavabi, Amir H.
|0 P:(DE-Juel1)157886
|b 4
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 5
700 1 _ |a Hooley, Robert
|0 0000-0002-3515-4195
|b 6
700 1 _ |a Sun, Hongyu
|b 7
700 1 _ |a Pérez Garza, H. Hugo
|0 0000-0002-5597-7914
|b 8
700 1 _ |a Eichel, Rüdiger-A
|0 P:(DE-Juel1)156123
|b 9
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 10
|e Corresponding author
700 1 _ |a Malladi, Sai Rama Krishna
|0 0000-0002-0322-8137
|b 11
|e Corresponding author
773 _ _ |a 10.1038/s42004-025-01407-3
|g Vol. 8, no. 1, p. 8
|0 PERI:(DE-600)2929562-2
|n 1
|p 8
|t Communications chemistry
|v 8
|y 2025
|x 2399-3669
856 4 _ |u https://juser.fz-juelich.de/record/1048103/files/s42004-025-01407-3.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1048103
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180853
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN CHEM : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:12Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:12Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-04-10T15:36:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN CHEM : 2022
|d 2024-12-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21