001048104 001__ 1048104
001048104 005__ 20251120202159.0
001048104 0247_ $$2doi$$a10.1039/D5IM00033E
001048104 0247_ $$2ISSN$$a2755-2608
001048104 0247_ $$2ISSN$$a2755-2500
001048104 037__ $$aFZJ-2025-04496
001048104 082__ $$a670
001048104 1001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine E.$$b0
001048104 245__ $$aCarbon-supported Ni nanoparticles in CO 2 methanation: role of a superficial NiO shell observed by in situ TEM
001048104 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2025
001048104 3367_ $$2DRIVER$$aarticle
001048104 3367_ $$2DataCite$$aOutput Types/Journal article
001048104 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763641276_29910
001048104 3367_ $$2BibTeX$$aARTICLE
001048104 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048104 3367_ $$00$$2EndNote$$aJournal Article
001048104 520__ $$aCO2 methanation offers a pathway to produce a carbon-neutral methane fuel. Although a number of research efforts have been conducted on this topic, a greater understanding of the mechanism of the reaction, which is still under debate, is needed. Here, using in situ transmission electron microscopy, we provide direct insights into the dynamics of a metallic nickel catalyst supported on activated carbon during CO2 methanation. The keys to the high performance of the catalyst are the in situ formation and dynamic behavior of a Ni@NiO core@shell nanostructure. Based on the detailed electron microscopy investigation, the mechanism of such nanostructure formation during methanation is proposed. Our studies revealed that the deactivation of the catalyst is not due to the accumulation of carbon coke over nickel nanoparticles, but an increase in the size of the nickel nanoparticles that is responsible for the deactivation of the catalyst over time.
001048104 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001048104 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048104 7001_ $$0P:(DE-HGF)0$$aGonçalves, Liliana P. L.$$b1
001048104 7001_ $$0P:(DE-HGF)0$$aSousa, Juliana P. S.$$b2
001048104 7001_ $$00000-0002-9015-1237$$aSoares, O. Salomé G. P.$$b3
001048104 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4$$ufzj
001048104 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b5$$ufzj
001048104 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b6
001048104 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b7$$ufzj
001048104 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b8
001048104 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b9$$eCorresponding author
001048104 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b10
001048104 7001_ $$00000-0001-7493-1762$$aKolen'ko, Yury V.$$b11
001048104 7001_ $$00000-0002-5447-2471$$aPereira, M. Fernando R.$$b12$$eCorresponding author
001048104 773__ $$0PERI:(DE-600)3177694-2$$a10.1039/D5IM00033E$$gp. 10.1039.D5IM00033E$$pNA$$tIndustrial chemistry & materials$$vNA$$x2755-2608$$y2025
001048104 8564_ $$uhttps://juser.fz-juelich.de/record/1048104/files/d5im00033e.pdf$$yRestricted
001048104 909CO $$ooai:juser.fz-juelich.de:1048104$$pVDB
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b5$$kFZJ
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b6$$kFZJ
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b7$$kFZJ
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b9$$kFZJ
001048104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b10$$kFZJ
001048104 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b10$$kRWTH
001048104 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001048104 9141_ $$y2025
001048104 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001048104 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-30T15:29:19Z
001048104 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-30T15:29:19Z
001048104 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-30T15:29:19Z
001048104 920__ $$lyes
001048104 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001048104 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
001048104 980__ $$ajournal
001048104 980__ $$aVDB
001048104 980__ $$aI:(DE-Juel1)IET-1-20110218
001048104 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001048104 980__ $$aUNRESTRICTED