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Adiabatic sheath model for beam-driven blowout plasma channels
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In plasma wakefield accelerators, the structure of the blowout sheath is vital for the blowout radius and
the electromagnetic field distribution inside the blowout. Most previous theories assume artificial distribution
functions for the sheath, which are either inaccurate or require prior knowledge of parameters. In this paper,
we use an adiabatic sheath model based on force balancing to overcome these limitations. This model gives
self-consistent forms of the sheath and pseudopotential distribution and estimates the balancing radius of the
blowout channel better than previous models. Our findings not only enhance the understanding of sheath
dynamics but also offer a self-consistent theoretical foundation for future studies on nonlinear phenomena in
the blowout channel.
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I. INTRODUCTION

Beam-driven plasma wakefield accelerators (PWFAs) have
the capacity to accelerate particles to tens of GeV en-
ergies in meter-scale structures, making them competitive
candidates for future high-energy accelerators that are used
for next-generation particle colliders and x-ray free-electron
lasers [1–7]. In a PWFA, when a high-current, relativistic elec-
tron beam, called the drive beam, interacts with an underdense
plasma, plasma electrons are completely radially expelled
while the ions remain immobile due to their much larger mass,
forming an electron-free ion channel along the propagation
axis. The physics of plasma response in this regime is strongly
nonlinear, and the regime has been referred to as the blowout
or bubble regime. In this regime, the acceleration (or decel-
eration) field is uniform and the focusing field is linear with
regard to the radial offset from the axis [8–12].

On the boundary of the bubble, the expelled electrons
form a narrow sheath, where the electron density and current
profiles steepen with a large value and decay in a small thick-
ness [13–15]. The sheath structure depends on the properties
of the drive beam and is strongly correlated with the creation
of the plasma blowout, the structure of wakefield inside the
blowout, and the processes of particle injection into the wake-
field [16–18].

Existing theories have used rectangular or exponential dis-
tributions to simplify the sheath shape [19–24]. Dalichaouch
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et al. [25] proposed a multisheath model, which employs
two sheath layers to describe the wakefield more accurately.
However, these models require the prior knowledge of the
sheath thickness, which cannot be obtained self-consistently.
Recently, Golovanov et al. [26] have developed a blowout
theory from the energy conservation point of view. They have
assumed a δ-function distribution for the blowout sheath and
found the evolution function for the blowout channel radius
rδ as

A(rδ )rδ

d2rδ

dξ 2
+ B(rδ )r2

δ

(
drδ

dξ

)2

+ Cr2
δ = �, (1)

where A = 1 + r2
δ /4, B = 1/2 + 1/r2

δ , and C = 1
4 . Here,

ξ = ct − z is the longitudinal comoving coordinate, c is the
speed of light in vacuum, t is time, and z is the longitudinal
coordinate. The drive term of the equation can be written
as � = 2I/IA, where I is the instant current of the beam,
IA = 4πε0mec3/e ≈ 17 kA is the Alfvén current, ε0 is the
vacuum permittivity, me is the electron rest mass, and e is the
elementary charge [27–29]. If derivatives of rδ are assumed
to be zero, one can obtain the balancing radius of the channel
based on the δ-sheath theory as

rδ0 = 2
√

�. (2)

By contrast, the charge neutralization radius

rn =
√

2� (3)

has been widely accepted as the balancing radius from the
electrostatic point of view [12,28,30].

In this paper, we develop a self-consistent model for the
channel sheath using the adiabatic assumption [31]. The
sheath equations are examined in two cases with the help
of particle-in-cell (PIC) simulations. We demonstrate that
our model provides a more accurate description of blowout
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FIG. 1. Illustration of the adiabatic sheath model in this paper.
The electron beam (orange, beam head is not shown), with a linear
density �(ξ ), is moving to the left along the ξ axis and drives the
plasma wakefield in the blowout regime. The plasma electrons (gray
region) are completely evacuated in the channel with the radius rc(ξ ),
leaving an immobile ion column (white region). As � varies slowly
with ξ in our assumption, the transverse electromagnetic balance is
achieved everywhere. The right two subplots show the transverse
distribution of the pseudopotential ψ and the electron density ne at a
certain ξ denoted by the blue dashed line.

channel balancing, as its predicted channel radius falls be-
tween the electrostatic neutralization radius and that predicted
by the δ-sheath theory.

Throughout the paper, we adopt the plasma normalization
units, in which charge is normalized to e, mass to me, velocity
to c, density to plasma density np, time to ω−1

p , length to c/ωp,
electric field to mecωp/e, magnetic field to meωp/e, electro-
static potential to mec2/e, and vector potential to mec/e, where
ωp = √

e2np/ε0me is the plasma frequency.

II. MODEL DESCRIPTION

We consider a highly relativistic drive electron beam with
density nb(ξ, r) that expels the plasma electrons to form an
ion channel with a radius rc(ξ ), where r is the radial coordi-
nate, and cylindrical symmetry is assumed. We assume that
the drive beam is narrower than the channel, so that there
is no drive charge outside the channel, or nb = 0 for r > rc.
Under these assumptions, the drive term can also be written
as �(ξ ) = ∫ ∞

0 nbrdr, which has the physical meaning of the
(normalized) linear density of the drive beam.

Furthermore, we assume the radius of the ion chan-
nel changes adiabatically, which means (drc/rc)/dξ � 1,
(d�/�)/dξ � 1, and ∂ξ � ∂r for all field variables, as il-
lustrated in Fig. 1. Under the cylindrical symmetry and the
quasistatic approximation [32,33], the pseudopotential of the
wakefield obeys the following Poisson-like equation [12,34]:

−1

r

∂

∂r

(
r

∂

∂r
ψ

)
= S, (4)

where ψ = ϕ − Az is the pseudopotential, ϕ is the electro-
static potential, Az is the longitudinal component of the vector
potential,

S = ρ − Jz = 1 − ne(1 − vz ) (5)

is the source term, ρ is the charge density, Jz is the longitudinal
component of the current density, ne is the plasma electron

density, and vz is the longitudinal velocity of the plasma
electrons. Because ne = 0 for r < rc, we can write the form
of the pseudopotential inside the blowout

ψ |r<rc
= ψc + r2

c

4
− r2

4
, (6)

where

ψc = ψ |r=rc
> 0 (7)

is to be determined. It can be derived that ψc = 0 with
the δ-function distribution, i.e., S = 1 − H (r − rc) − rcδ(r −
rc)/2, where H is the Heaviside step function, and δ is the
Dirac delta function. However, in this paper, S is finite ev-
erywhere, so that ψc is nonzero, and ∂ψ/∂r is continuous
everywhere because of Eq. (4), which means

∂

∂r
ψ

∣∣∣∣
r=rc

= − rc

2
. (8)

The other boundary condition is

lim
r→∞ ψ = 0, (9)

which is a natural requirement that the plasma disturbance is
local.

For a plasma electron which is at rest before the drive beam
arrives, there is a constant of motion [33]

γ − vzγ − ψ = 1, (10)

where γ = 1/
√

1 − v2
z − v2

r is the Lorentz factor, and vz and
vr are the longitudinal and radial components of the veloc-
ity of the electron, respectively. This equation can be solved
under the adiabatic assumption, which means vr ≈ 0, as

vz = 2

1 + (1 + ψ )2 − 1. (11)

Based on the adiabatic assumption, the transverse electro-
magnetic field can be written using Gauss’s law and Stokes’
theorem

Er = r

2
− �

r
− 1

r

∫ r

0
ne(r′)r′dr′, (12)

Bθ = −�

r
− 1

r

∫ r

0
ne(r′)vz(r′)r′dr′. (13)

The transverse force Fr = −Er + vzBθ should be balanced for
r > rc, which means

0 = rFr = − r2

2
+ (1 − vz )� +

∫ r

0
ne(r′)r′dr′

− vz

∫ r

0
ne(r′)vz(r′)r′dr′. (14)

The channel radius is determined by letting r = rc in
Eq. (14), as

rc =
√

2(1 − vzc)� = 2

√
�

1 + 1
(1+ψc )2

, (15)

where

vzc = vz|r=rc
= 2

1 + (1 + ψc)2 − 1. (16)
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FIG. 2. Comparison of ψc vs rc obtained by the numerical inte-
gral of Eqs. (4), (11), and (14) using the boundary conditions Eqs. (8)
and (9) (black squares), by the polynomial fit Eq. (17) (green line),
by the linear theory Eq. (22) (yellow line), by PIC simulations in
near-adiabatic cases (red dots) and in near-stationary cases (blue
triangles). Both (a) large and (b) small scales of rc are plotted to
show the different asymptotic behavior of ψc at the two ends.

We see that rc reduces to rn if ψc = 0 and to rδ0 if ψc →
∞. Then we know rn < rc < rδ0 if ψc is nonzero and finite
because rc monotonically increases with ψc.

III. MODEL SOLUTION

The sheath model defined by Eqs. (4), (11), and (14) is
solvable using the left boundary condition Eq. (8) and the right
boundary condition Eq. (9). We use the shooting method to
numerically solve the equations. In other words, the numerical
integral is performed from r = rc to a sufficiently large value
of r, while ψc is predicted and corrected in iterations, so that
Eq. (9) is satisfied to a certain accuracy. Practically, there is a
critical value of ψc for each rc, which prevents divergence at
large r. The Python script for the numerical solution is in the
Supplemental Material [35] and is maintained on GitHub [36].
The numerical solution of ψc with different rc is shown in
Fig. 2. The polynomial fit

ψc ≈ −0.012r2
c + 0.363rc − 0.044 (17)

is a good estimate for rc � 8, as shown in Fig. 2(a).
After ψc is obtained, the electron density at the sheath

boundary can be predicted. By taking the derivative of
Eq. (14), we obtain

ner
(
1 − v2

z

) = r + �
∂vz

∂r
+ ∂vz

∂r

∫ r

0
ne(r′)vz(r′)r′dr′. (18)

At r = rc, the integral is zero, the derivative of vz can be
determined by Eqs. (8) and (11), and � can be written as the
function of rc and ψc according to Eq. (15). As a result,

ne|r=rc
= r2

c

8

(
1

ψ∗
+ 1

ψ3∗

)
+ 1

4

(
ψ∗ + 1

ψ∗

)2

, (19)

where ψ∗ = 1 + ψc.
Next, we study the behavior of ψ and ψc in the limit

ψc � 1. This also means rc � 1, � � 1, and ψ � 1. By
expanding Eqs. (11) and (18) and keeping only the first-order
terms of ψ , we have vz ≈ −ψ and ne ≈ 1. Thus, the linear
form of Eq. (4) is obtained

∂2

∂r2
ψ + 1

r

∂

∂r
ψ − ψ = 0. (20)

The solution satisfying the right boundary condition Eq. (9)
is ψ = R(rc)K0(r), where R(rc) is a constant of r to be deter-
mined, and K0(r) is the modified Bessel function of the second
kind of order zero [37]. By also considering the left boundary
condition Eq. (8), we may get the expression of R(rc) to the
lowest order of rc and find

ψ |r>rc
= r2

c

2
K0(r). (21)

Thus,

ψc = r2
c

2
K0(rc), (22)

or ψc ≈ − r2
c
2 (ln rc

2 + 0.577 . . . ), where the second summand
is the Euler-Mascheroni constant. We can see in Fig. 2(b)
that Eq. (22) is satisfactory with the numerical results for
rc � 0.28, while Eq. (17) is better for rc � 0.28.

IV. COMPARISON WITH SIMULATIONS

Once ψc is determined, the one-to-one mapping between �

and rc can be obtained according to Eq. (15). For comparison,
PIC simulations have been performed using the quasistatic
code QuickPIC [38,39]. In the simulations, we consider a
5 GeV drive electron beam, transversely positioned at x =
y = 0 (i.e., the center of the simulation domain). It has a
sufficiently small transverse size, while its longitudinal size
is the same as the entire simulation domain. Two sets of sim-
ulations with different drive beam current profiles have been
conducted. One is called the near-adiabatic profile, where �

increases linearly with a sufficiently small slope. The other is
called the near-stationary profile, where � increases from 0 to
a plateau, and the increasing profile and length are designed
so that the oscillation of the channel radius in the plateau is
not severe.

In the near-adiabatic simulations, we have chosen the max-
imum �max = 4 for the large rc scale shown in Figs. 2(a)
and 3(a) and �max = 0.4 for the small rc scale shown in
Fig. 2(b). The simulation domain has a size of 200 in the
ξ direction, which is the propagation direction, and 40 (10)
in the x and y directions for the �max = 4 (0.4) case. The
numbers of cells are 2048, 1024, and 1024, respectively. The
near-adiabatic simulation results for ψc vs rc are shown in
Fig. 2, which are in good agreement with our model.

In the near-stationary simulations, � increases from 0 to
the plateau value �0 within 0 � ξ � 25 and keeps the plateau
value in the remaining of the simulation domain, as shown
in Fig. 3(c). Cubic splines have been designed to smooth the
transitions near ξ = 0 and 25. Here, the simulation domain
has a longitudinal size of 48, while the transverse size is
adjusted in accordance with �0, such that ψ → 0 at the sim-
ulation boundary is guaranteed (∂ψ/∂r ≈ 0 at the boundary),
and the transverse resolution is adequate to resolve the sheath.
Again, the number of cells is chosen to be 2048 × 1024 ×
1024. Here, �0 has been scanned from 2.5 × 10−5 to 6.25 in
the simulations. The results of ψc vs rc are shown in Fig. 2,
which are also in good agreement with our model.

Plasma density slices at y = 0 for two of the above-
mentioned simulations are shown in Figs. 3(b) and 3(d). We
compare the simulations with rδ0 obtained by Eq. (2), rn
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(a)

(b)

(c)

(d)

FIG. 3. The distribution of � and slice plots of plasma electron
density at y = 0 (gray) in simulations for (a) and (b) a near-adiabatic
case and (c) and (d) a near-stationary case. The numerical solution of
the balancing radius based on the δ-sheath theory rδ (yellow dashed
line) and its balance rδ0 (red line), the neutralization radius rn (blue
line), the solution based on our theory rc (orange dashed line), the
numerical solution based on Lu’s model with β = 1/rc + 0.1 (cyan
dashed line), and the combined model with β in Lu’s model replaced
by Eq. (23) (violet dotted line) are plotted for the comparison.

obtained by Eq. (3), and rc obtained by Eq. (15). We see that
the channel radius in simulations best matches with rc, while
rn is an underestimate and rδ0 is an overestimate.

V. COMBINED MODEL FOR THE OSCILLATION
OF THE CHANNEL RADIUS

The channel radius slightly oscillates around rc

in the near-stationary case because of the imperfect
balancing, as shown in Fig. 3(d). This oscillation
behavior can be numerically solved using Lu’s
model [12,19], which is similar to Eq. (1), but the
parameters are A = 1 + [ 1

4 + β/2 + (rc/8)(dβ/drc)]r2
c ,

B = 1
2 + ( 3

4 )β + (3rc/4)(dβ/drc) + (r2
c /8)(d2β/dr2

c ), and
C = [1 + 1/(1 + βr2

c /4)2]/4. The variable β needs prior
knowledge to the sheath thickness and was recommended
to be β = 1/rc + 0.1. Although Lu’s model is in good
agreement with the simulation in the short drive cases (the
drive beam is shorter than or comparable with the plasma
wavelength), it has some slight error in the long drive cases,
as shown in Fig. 3(d).

To improve Lu’s model, we replace β by

β = 4ψc

r2
c

, (23)

where ψc is expressed in a piecewise manner by Eq. (22)
for rc < 0.28 and by Eq. (17) for rc > 0.28, and call it the
combined model. The combined model has been applied to the
near-stationary cases, with one example shown as the violet
dotted line in Fig. 3(d). To quantitatively compare the results
from the three models with those from the simulation, we
calculate the average radius in the plateau of � distribution.
Compared with the simulation result, our combined model
only exhibits a 0.55% difference, while rδ has a 24.28% differ-
ence, and Lu’s model has a −2.11% difference. Moreover, we
have observed that the oscillation frequency of the channel ra-
dius in Lu’s model is slightly larger than the actual frequency.
It should be noted that, in the near-adiabatic case, as shown

(a)

(b)

(c)

FIG. 4. The current profile design of a plasma wakefield accel-
erator with the transformer ratio of 3. (a) The distribution of � for
both the driving (0 � ξ � 15) and trailing (15.5 � ξ � 22) beams.
The profile is designed so that the major part of the beam witnesses
constant deceleration (acceleration) field for the driving (trailing)
beam according to our adiabatic sheath model, and cubic splines are
used between the transitions to avoid abrupt changes. (b) The slice
plot of the plasma electron density at y = 0. (c) The comparison of
the on-axis longitudinal electric field Ez from the simulation (black
solid line) and based on the models: δ-sheath theory (orange dashed
line), charge neutralization model (magenta dashed line), Lu’s model
with β = 1/rc + 0.1 (cyan dashed line), and the adiabatic sheath
model (red dashed line).

in Fig. 3(b), we do not show the curves of rδ , Lu’s model, and
the combined model because the radii from Lu’s model and
the combined model are both approximately equal to rc,
and the curve of rδ almost perfectly overlaps with that of rδ0.

VI. APPLICATION IN HIGH TRANSFORMER
RATIO ACCELERATION

We further show a practical application of the adiabatic
sheath model in achieving high transformer ratio accelera-
tion [40,41]. The longitudinal electric field inside the blowout
is given by Ez = dψa/dξ , where ψa = ψ |r=0 is the pseudopo-
tential on axis and can be determined according to Eqs. (6),
(15), (17), and (22). In most cases, rc > 0.28, and it can be
derived that the condition for achieving a constant Ez is

� ≈ 1.05(U − 0.37)2

{
1 + 1

[3.73 − 0.05(U − 7.82)2]2

}
,

(24)

where

U =
√

Ezξ + C. (25)
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If the initial conditions given at ξ = ξ0 are rc(ξ0) = rc0 and
Ez(ξ0) = Ez0, the parameter C should be

C = 0.238r2
c0 + 0.362rc0 + 0.14 − Ez0ξ0 (26)

to ensure that Ez remains the constant Ez0 for ξ > ξ0. We
have applied this condition to design a profile of � shown in
Fig. 4(a) and performed such a simulation shown in Fig. 4(b).
The profile consists of two designed curves within 3.3 < ξ <

15 and 16.7 < ξ < 22 based on Eqs. (24) to (26) and cubic
splines within 0 < ξ < 3.3 and 15.5 < ξ < 16.7 to smooth
the transitions. In this case, the transformer ratio, defined
as the acceleration field of the trailing beam divided by the
deceleration field of the driving beam, is ∼3, and Ez from
our adiabatic sheath model agrees best among the models
with the simulation results in the deceleration phase 3.3 <

ξ < 15, as shown in Fig. 4(c). We see that Ez is almost
a constant of 0.1 in this phase, which proves the validity
of our design. Note that the design is not so satisfactory
in the acceleration phase 16.7 < ξ < 22 because the sheath
has gained strong retraction momentum during the profile
gap 15 < ξ < 15.5, and the near-adiabatic status is difficult
to be recovered. Nevertheless, the Ez within 16.7 < ξ < 22
from the simulation has an average value of ∼ − 0.3, which
best agrees with our model among all the above-mentioned
models.

VII. CONCLUSIONS

In conclusion, we have introduced a self-consistent model
for the sheath structure of the blowout plasma channel
driven by an electron beam based on the adiabatic as-
sumption. The model consists of the equations for the

pseudopotential Eq. (4), the longitudinal velocity of the sheath
electrons Eq. (11), and the transverse force balancing condi-
tion Eq. (14), which is solvable with the boundary conditions
Eqs. (8) and (9). An analytical solution is obtained in the
small-blowout limit as Eq. (21), and a general solution is
retrieved numerically by the shooting method. The PIC sim-
ulations show that the radius obtained by Eq. (15) is a better
estimate of the channel balancing radius than that from previ-
ous neutralization or δ-sheath models.

It should be noted that the accuracy of our model is limited
in short drive beam cases. Nevertheless, our model is very
suitable for long drive beams. Especially by combining our
model with Lu’s model, we have obtained the most correct
description of the oscillation of the channel radius. Further-
more, the ion motion may have to be considered for such
long drive beam cases [42,43], unless the plasma background
consists of heavy ions, which is to be addressed in a future
work. The better understanding of the pseudopotential at the
sheath boundary and inside the blowout for long drive cases
is crucial for high transformer ratio and future high-energy
PWFA studies [5,40,41].
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