001     1048115
005     20251113202122.0
024 7 _ |a 10.1038/s41467-025-64443-6
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04506
|2 datacite_doi
037 _ _ |a FZJ-2025-04506
082 _ _ |a 500
100 1 _ |a Han, Mookyoung
|0 0009-0004-8007-5711
|b 0
245 _ _ |a Anle138b binds predominantly to the central cavity in lipidic Aβ₄₀ fibrils and modulates fibril formation
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763041626_20795
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer’s disease is a specific neurodegenerative disorder, distinct from normal aging, with a growing unmet medical need. It is characterized by the accumulation of amyloid plaques in the brain, primarily consisting of amyloid beta (Aβ) fibrils. Therapeutic antibodies can slow down the disease, but are associated with potential severe side effects, motivating the development of small molecules to halt disease progression. This study investigates the interaction between the clinical drug candidate small molecule anle138b and lipidic Aβ₄₀ fibrils of type 1 (L1). L1 fibrils were previously shown to closely resemble fibrils from Alzheimer’s patients. Using high-resolution structural biology techniques, including cryo-electron microscopy (cryo-EM), nuclear magnetic resonance (NMR) spectroscopy enhanced by dynamic nuclear polarization (DNP), and molecular dynamics (MD) simulations, we find that anle138b selectively binds to a cavity within the fibril. This structural insight provides a deeper understanding of a potential drug-binding mechanism at the atomic level andmay inform the development of therapies and diagnostic approaches. In addition, anle138b reduces fibril formation in the presence of lipids by approximately 75%. Thismay suggest amechanistic connection to its previously reported activity in animal models of Alzheimer’s disease.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Frieg, Benedikt
|0 P:(DE-Juel1)172887
|b 1
700 1 _ |a Matthes, Dirk
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Leonov, Andrei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ryazanov, Sergey
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Giller, Karin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nimerovsky, Evgeny
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stampolaki, Marianna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Xue, Kai
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Overkamp, Kerstin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dienemann, Christian
|0 0000-0002-2172-5110
|b 10
700 1 _ |a Riedel, Dietmar
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Giese, Armin
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Becker, Stefan
|0 0000-0003-2041-5740
|b 13
700 1 _ |a de Groot, Bert L.
|0 0000-0003-3570-3534
|b 14
700 1 _ |a Schröder, Gunnar F.
|0 P:(DE-Juel1)132018
|b 15
700 1 _ |a Andreas, Loren B.
|0 0000-0003-3216-9065
|b 16
|e Corresponding author
700 1 _ |a Griesinger, Christian
|0 0000-0002-1266-4344
|b 17
|e Corresponding author
773 _ _ |a 10.1038/s41467-025-64443-6
|g Vol. 16, no. 1, p. 8850
|0 PERI:(DE-600)2553671-0
|n 1
|p 8850
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/1048115/files/s41467-025-64443-6.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048115
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)132018
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21