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ABSTRACT

The effects of initial spin orientation on the final electron beam polarization in laser wakefield acceleration in a pre-polarized plasma are
investigated theoretically and numerically. From the results of variation of the initial spin direction, the spin dynamics of the electron beam
are found to depend on the self-injection mechanism. The effects of wakefields and laser fields are studied using test particle dynamics and
particle-in-cell simulations based on the Thomas-Bargmann-Michel-Telegdi equation. Compared with transverse injection, longitudinal
injection is found to be preferable for obtaining a highly polarized electron beam.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0279175

I. INTRODUCTION

Spin-polarized electron beams have notable applications in
nuclear and particle physics as well as high energy physics,' "
such as testing the Standard Model of particle physics,” explor-
ing the structure of subatomic particles,” detecting nuclear spin
structures,” producing polarized gamma rays and positrons,” * and
diagnosing characteristics of ultrafast ultraintense laser pulses.'
In conventional accelerators, such as electron storage rings, the
Sokolov-Ternov effect requires approximately several hours to
establish polarization.'"'” On the other hand, conventional electron

accelerators are limited by the breakdown of radio-frequency cav-
ities (100 MV/m) and are large in size, as well as expensive.'”*
Owing to its extremely high accelerating gradients above 100 GV/m,
allowing the acceleration process to be accomplished within a
few picoseconds, laser-wakefield acceleration (LWFA) has attracted
growing attention.' '

Extensive theoretical and experimental investigations of
LWFA,"” together with the development of pre-polarized plasma
targets,”””’ have led to considerable interest in the possibility of
generating spin-polarized electron beams with high-quality via
different injection mechanisms.”” *° Wen et al.’® proposed that
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high-current polarized electron beams could be produced through
density-transition injection in a pre-polarized gas plasma generated
by laser-induced photodissociation. Wu et al.”’ ' demonstrated that
highly spin-polarized electron beams could be obtained by using
vortex Laguerre-Gaussian lasers. Nie et al.”>"’ proposed to generate
electron beams with high polarization on the basis of the ionization-
induced injection mechanism. Recently, it has been proposed that
attosecond electron bunches with high spin-polarization could be
obtained by using a radially polarized laser.”* It has also been pro-
posed that the colliding-pulse injection mechanism could enable the
production of quasi-monoenergetic polarized electron beams using
commercial 10 TW laser systems with a pre-polarized plasma.””*

Among the above studies, particular attention has been paid
to the self-injection mechanism, since it is straightforward and is
rather easy to implement experimentally. According to the different
electron trajectories, the self-injection process is divided into trans-
verse injection and longitudinal injection.”” When an ultra-intense
laser pulse propagates into an underdense plasma, electrons near the
laser axis are pushed sideways and form a blowout regime behind the
laser. Some electrons can be accelerated after they are captured in the
tail of the bubble.'® In the transverse case, the trapped electrons are
initially located at the transverse radii of the bubble regime,’® and
their spins are affected predominantly by the bubble fields.”” In the
longitudinal case, which mainly occurs in the quasi-1D regime, the
captured electrons are initially located near the laser axis,*’ and their
spins are mainly affected by the laser fields."’

In the experimental scheme suggested in Ref. 42, the pre-
polarized plasma is formed by a dedicated laser beam, and it is
difficult to perfectly align this with the accelerating laser. There-
fore, the electron spin direction forms an angle with the laser
axis. In this paper, this phenomenon is investigated, taking into
account both the bubble field and laser field. The theoretical anal-
ysis is outlined in Sec. I1. Numerical simulation results are presented
in Sec. III, where transverse and longitudinal self-injections are
discussed. Conclusions are given in Sec. I'V.

Il. THEORETICAL ANALYSIS

The electron spin can be treated as a quasi-classical state
with a unit vector s, which has an absolute value of 1. If an
electron with velocity v moves in an electromagnetic field, the
precession of its spin vector s can be calculated through the
Thomas-Bargmann-Michel-Telegdi (TBMT) equation'”*’

gznxs, (1)

with the spin precession frequency

Q:e[(ae+1)B— ey 'v-Blg—(ae+1)1;XE:|- 2)
Me y y+1 C y+1 C

Here, m,, e, and y are the mass, charge, and Lorentz factor of the
electron, a, ~ 1.16 x 10~° is the dimensionless anomalous magnetic
moment, ¢ is the speed of light in vacuum, B is the magnetic field,
and E is the electric field in the laboratory frame. During LWFA,
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the radiation reaction, the Stern-Gerlach and the Sokolov-Ternov
effects can be ignored according to Ref. 44.

For simplicity, the initial degree of polarization in the plasma
is assumed to be 100%, since the effect of the initial spin direction is
the main focus of this study. As presented in Fig. 1, a laser with linear
polarization along the y direction propagates in the plasma along the
x direction. In the general case, the electron spin direction is defined
by the pre-polarization angle 6y with respect to the x direction and
the azimuthal angle 8 with respect to the y direction, as indicated
in Fig. 1. The initial electron spin vector sy can thus be written as
so = cos Ooi + cos ﬁo sin Boj + sin [30 sin Ok, as indicated by the yellow
arrows in Fig. 1.

When electrons are captured and accelerated in the blowout
regime, their depolarization occurs mainly in the injection process
rather than the acceleration process. In the case of transverse injec-
tion, the precession of electron spin is mainly divided into two stages
for the injection process, according to Ref. 39. In the first stage, the
electrons arrive at the bubble sheath in the transverse direction, and
their spins are affected mainly by the magnetic field B, and elec-
tric field E,. In the second stage, the electrons are located at the
tail of the bubble, and their spins are affected mainly by the elec-
tric field E,. This results in a spin precession frequency of electrons
Q ~ Q,, according to Eq. (1), with a constant direction of Q during
the injection process. Cylindrical coordinates, with polar angle ¢, are
used here because the electromagnetic field is approximately axially
symmetric in the bubble regime.

According to Eq. (1), the precession of electron spin is
described as rotational motion of the spin vector s around the direc-
tion of the precession frequency Q. Since the direction of © does
not change with time, the spin rotation depends on the strength of
Q, and the rotational motion defines the plane AOC, as displayed
in Fig. 2. The red and blue arrows represent the initial spin vector
so = Soy ¥ + soxk and final spin vector s; = sty ¥ + sk, where ¥ and &
are unit vectors respectively parallel and perpendicular to the direc-
tion of Q. The rotation angle in the rotation plane between the initial
state (PA) and final time (PC) is defined as a,. Therefore, the com-
ponent of the final spin s; along the direction of initial spin s, for an
electron can be written as

FIG. 1. Schematic of the interaction of laser and pre-polarized plasma. The longi-
tudinal profile of the plasma density consists of a transition from 0 to n with length
Ly and a plateau with ng. The laser is focused at the left-hand boundary of the
plasma. The initial spin state is defined by the angles 6y and f,, and is indicated
by the yellow arrows. ¢ denotes the polar angle of a cylindrical coordinate system.
The self-injection mechanism for accelerating electrons is divided into transverse
(red arrow) and longitudinal (green arrow) schemes according to their trajectories.
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FIG. 2. Schematic of electron spin evolution with a fixed direction of precession
frequency Q. The electron spins at the initial time (sp) and final time (s;) are
denoted by the red and blue arrows, respectively. «; denotes the rotation angle
during At in the AOC plane.

sp=s-8=1- 2|50,<ic|2 sinz(%). 3)

For the accelerated electrons in the bubble field, considering that
Q ~ Q,, the component of the initial spin vector sy along § can be
written as

[soy 91 = Iso - 9|
= |(cos By i+ cosfo sin By j + sin By sin Oy k) - ¢|

= |-sin 6y cos By sin ¢ + sin Oy sin By cos ¢|. 4)

Considering that [soc| = \/1 - |soy|*, Eq. (3) can be rewritten as
«
S| = Cos &y + sinz(zr)sinzeo (sinfo cos ¢ — cos By sin (p)z. (5)

It can be seen that s is related to the initial polarization direction,
i.e., the pre-polarization angle 6y and azimuthal angle f, and s also
depends on the electron position and the electromagnetic field, as
represented by ¢ and «;.

The polarization of the accelerated beam can be derived as the
average value of the injected electron spins. In the case of transverse
injection, the electrons are initially located in the region around the
transverse radius, from Rg min to Romax. Electrons located at the same
distance r from the laser axis are injected into the bubble at the same
time. According to Eq. (5), the polarization of the injected electrons
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where (cosa,) = fR}s‘;m cos &, - 7 Ar/ (Rimax — Rémin ). It should be
noted that the value of (s|) depends on 6. However, it is inde-
pendent of B, which can be always set to zero through a coor-
dinate transformation. Besides, in the case of 8y = 0°, (s”) = cos &

€ [-1,1], while in the case of 6y = 90°, (s;) = (1 +cosa,) € [0,1].
More importantly, the electron polarization (s ) increases monoton-
ically with 6, in the range [0, /2], which indicates that the initial

state of the electron spin can affect the final polarization.

lll. SIMULATION METHODS AND DISCUSSION

To confirm the above theoretical analysis, the electron spin
motion is also examined using test particle dynamics and particle-
in-cell (PIC) simulations. The PIC simulations are performed with
a modified version of the EPOCH code,”” which includes the
spin evolution module based on the TBMT equation via the Boris
pusher method.*® The laser propagates in the x direction with lin-
ear polarization along the y direction and a transverse Gaussian
envelope

Eowo Y22 (t-1)°
= - - , 7
7 w(x) P w(x)*  (0.57)° cose @)
where the laser wavelength 1=800 nm, w(x)=wp

[1+(x-x0)%/z]"% zr=nwi/\, 7 is the laser pulse dura-
tion, and ag = eEg/mewc is the normalized laser amplitude.
The laser pulse is focused at the left edge of the plasma target
(x0 =301). The initial longitudinal profile of the pre-polarized
plasma is an up-ramp followed by a plateau,”’ as presented in
Fig. 1. The normalized laser amplitude ao, the spot size wy, the
length of up-ramp transition L;, and the plasma density ny are
different in the cases of transverse and longitudinal injection.
The 2D simulation box is 2004 (x) x 1201 (y), with resolution
dx = 0.02A and dy = 0.08). For the 3D simulation, the simulation
box is 2001 (x) x 501 (y) x 501 (z) for transverse injection and
2001 (x) x 70A (y) x 70\ (z) for longitudinal injection. The spatial
resolution is dx =1/32 and dy = dz = 0.11. A moving window is
used to accelerate the electrons sufficiently, and there are four
pseudo-particles per cell for each particle species.

A. Transverse self-injection mechanism

In the case of the transverse self-injection mechanism, the
accelerated electrons are initially located at the transverse radii, and
the injection process is affected by the distribution of the electro-
magnetic field, which is determined by the bubble geometry. On
the basis of the work of Li et al.,"” the electromagnetic field of an
ellipsoidal bubble can be written as

2

_ n
S Fe &

2 - qzvﬁ

can be derived as y = m% (8b)
Romax f’T s d d
Romn J—nSI7 4@ dr 1 .2 .2 2 — P2
(s) = W = 5[(cosoc,)(2 —sin"6)) +sin"6y], (6) E. = — Ul ;)b z, (8¢)
Romin /-7 ¢ dr 2’7 (1 - Ub) +4
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B, =0, (8d)
opn’
By= > 8
7 2;12(1—u,§)+4z (8e)
2
B, - Uolt (8f)

TP (1-d) + 47

where £ = x — vpt, vy = \/1 - p5° is the bubble phase velocity, and
b = 0.45\/n.[ng.”**" To confine the field distribution inside the
bubble, a modified factor f(r) = [tanh(Rj/d —r/d) + 1]/2 is used,

where r = /& + (3* +2°)/#*) and d is the width of the electron

sheath. In this work, d = 0.5 is adopted. The aspect ratio = R, /R,
is defined to describe the geometry of the bubble, where R and
R, are the longitudinal and transverse radii, respectively. They are
calculated directly through 2D PIC simulation. According to this
definition, # <1, # =1, and #n > 1 indicate a prolate spheroid, a
sphere, and an oblate spheroid, respectively.

The electron dynamics in the bubble field are calculated
using the fourth-order Runge-Kutta method based on the relativis-
tic Newton-Lorentz equation dP/dt = —e[E + (P/y) x B], where

y=1/3/1-v*/c* is the relativistic factor of the electrons. Mean-
while, the spin precession of an electron is calculated according to
the TBMT equation with the Boris-rotation method. The electrons
are initially located at the front of the bubble, denoted as (xo, Yo» 20).
The initial direction of electron spin sy is changed in the xy plane in
order to study the effect of initial spin on the final polarization.

The final distributions of electron spin s with initial transverse

position (Ro, ¢,) are presented in Fig. 3, where Ry =/ Yo + 2 and
¢, = tan"" (z0/y,). 60 = tan™" (soy/s0x) denotes the initial spin direc-
tion. 6y = 0° indicates that the initial spin is aligned with the laser-
propagation direction. Electrons with final kinetic energy larger than
20 MeV are selected as the accelerated electrons. It turns out that
the accelerated electrons are initially located around the transverse
radius, as indicated by the white dashed circles in Fig. 3(a). More
importantly, the distribution of s is axially symmetric. When the
initial state of the spin, 8y, is changed, there is an obvious difference
in the final distribution of 5|, and not only for accelerated electrons,
as revealed in Figs. 3(b) and 3(c). The distribution of electron spin
s does not obviously change for electrons initially located on the
z axis, whereas the value of s| increases from 6y = 0° to 90° for
electrons initially located on the y axis. As a consequence, the polar-
ization of the accelerated electron beam depends on the initial spin
state.

According to the theoretical analysis in Sec. II, the spin pre-
cession of the accelerated electrons is determined by ,, which
leads to rotation of the electron spin around the direction of ¢, as
a consequence of which the distribution of s is isotropic at 6o = 0°
and anisotropic at 6y = 45° and 90°. Furthermore, (s ) is indepen-
dent of the pre-polarization angle 8y for electrons located on the
z axis, whereas (s|) depends on 6 for electrons located on the
y axis.

This phenomenon can be explained by examining the electron
trajectory and spin precession, as shown in Figs. 4(a) and 4(b) for
two typical electrons with the same distance from the x axis. The
electron spin is initially aligned along the y axis, i.e., 8y = 90°, and

RESEARCH ARTICLE pubs.aip.org/aip/mre

o,(degree)

FIG. 3. Distributions of s as a function of initial electron position
(Ro, ¢,) for different initial polarization directions 6y = 0° (a), 45° (b), and 90°

(c). Here, Ry =\/y2 + 22, ¢, = tan~"(z0/y,), and 6o = tan~"(so,/s0¢). The
laser parameters are ap = 20, wy = 101, and 7 = 21 fs, and the plasma density is
no = 0.021n,. The bubble parameters are obtained through the PIC simulations,
where Ry = 10.31A, R, = 12.34),and 7 = R, /R) = 1.20. The electrons, initially
located in the region between the white dashed cicles from Ry min to Romax, €an be
captured by the bubble and finally obtain high energy.

the other parameters are the same as those in Fig. 3(c). As can be
seen in Fig. 4(a), the spin of the accelerated electron located initially
on the z axis does not fluctuate with time, because its spin direction
is always aligned with the direction of the precession frequency Q.
On the contrary, as can be seen in Fig. 4(b), for the accelerated elec-
tron initially located on the y axis, the spin direction starts to rotate
around the z axis. Thus, it is demonstrated that the electron spin
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FIG. 4. Evolution of electron trajectory (blue solid lines) and spin precession (red
arrows) in the case of transverse injection. The initial electron position (y,, o) is
(0.0,11.91) and (11.91,0.0) in [(a) and (b)], respectively. The other parameters
are same as those in Fig. 3(c).

is mainly influenced by Q., which is consistent with the theoretical
analysis.
The net polarization of a particle beam is defined as

P =1/(sx)* + (s,)* + (s:)%, where (s;) are the average values in

each direction. Figure 5(a) compares (s|) of accelerated electrons
obtained from 3D PIC simulation, theoretical analysis [Eq. (6)], and
test particle dynamics simulation. Here, the first bunch of acceler-
ated electron beams is chosen, whose kinetic energy Ej > 100 MeV
at 500 fs in the 3D PIC simulation, in order to minimize the effect of
bubble evolution caused by the laser evolution and electron accelera-
tion. The (s|) of the electron beam increases with increasing 6o. The
results from the test particle dynamics simulation are in agreement
with those from the theoretical analysis. Here, { cos a,) is chosen on
the basis of the test particle dynamics results. However, there is a
tiny difference between the theoretical results and those from the
3D PIC simulation, owing to limitations of the theoretical model of
the bubble field.”

For the 2D PIC simulation, Figs. 5(b) and 5(c) show the effect
of 6 on the polarization of the accelerated electron beam (s} ) in the
xy (¢ =0° or 180°) and xz planes (¢ = +90°), respectively. When
the simulation box is located in the xy plane [Fig. 5(b)], the evolu-
tion of (s} is independent of the initial spin state, because the spin
precession axis is always perpendicular to the instantaneous electron
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15 =3D PIC simulation (a) 3D 1.5 (b) 2D, xy plane
1 —Theoretical model of Eq. (6) 1 e —
—~ 05 Single electron dynamics ~ 0.5(60 =0° '\‘
@ @ 6y = 30°
~ 0 ~ Op.g, = 450 [ —
0.5 -0.5 6o =60° \ 7 T
) L Bo=90° ~
0 15 30 45 60 75 90 0 100 200 300 400 500
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1'? (¢) 2D, xz plane| 1'? (d) 2D
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-0.5}60 = 60° -0.5 [—Theoretical model of Eq. (9)
_ —6p = 90° 1 *2D PIC simulation
0 100 200 300 400 500 0 15 30 45 60 75 90
t(fs) 0o (degree)

FIG. 5. (a) Relationship between the polarization (s; ) of the accelerated electron
beam and the pre-polarization angle 6y, obtained from 3D PIC simulation, theo-
retical analysis [Eq. (6)], and test particle dynamics simulation. Here, the electrons
with Ex > 100 MeV at 500 fs are chosen as accelerated electrons. [(b) and (c)]
Evolution of (s ) about the electron beam for different pre-polarization angles 6y
from 2D PIC simulations in the xy and xz planes, respectively. (d) Distribution of
(s)) with 8y for the accelerated electrons from 2D PIC simulation in the xz plane
and from the theoretical model [Eq. (9)]. The accelerated electrons are chosen on
the basis of their position and energy in the 2D case, where 105.01 < x < 108.01,
[y| < 1.41 (or |z| < 1.41), and E, > 35 MeV at 360 fs on the xy (or xz) planes.
The laser parameters are ap = 20, wy = 10A, and 7 = 21 fs. The plasma density
is ng = 0.021nc and Ly = 10A.

spin direction. According to Eq. (5) and assuming 3, = 0°, the elec-
tron spin can be written as S| = cos ar, which means that the electron
spin is independent of the initial spin orientation.

When the simulation box is located in the xz plane, the polar-
ization dynamics is affected by the initial state, as revealed in
Fig. 5(c). On the basis of Eq. (5) and assuming 8, = 0°, the elec-
tron spin can be written as s = cos &, + 2 sin®(a,/2) sin” 6. The
polarization of the accelerated electrons is then obtained as

(sy) = Lo 5192
I le)max dz

Zomin

= (cosa,)(1 - sinzeo) + sin’6y, 9)

where (cosa,) = | j:f: cos &r dz/(Zomax — Zomin). Here, it is
assumed that electrons with initial position from zo min t0 Zomax are
injected into the bubble. The 2D theoretical model is in agreement
with the 2D PIC simulations, as shown in Fig. 5(d).

In the above discussion, a phenomenological model has been
used to describe the properties of the bubble geometry and field,
since this is an efficient approach for the study of test particle
dynamics. Lu et al.°! proposed an equation for the bubble boundary,
and further developments in theoretical models’””* " have pro-
vided descriptions of the bubble regime that give more accurate
fits with numerical simulations. Most of these theoretical develop-
ments have focused on particle-driven wakefield acceleration, since
the evolution of the driver can be ignored and it can be directly
described using its initial profile. However, for LWFA, the evolution
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of the laser is a 3D nonlinear phenomenon, and it is therefore dif-
ficult to accurately describe the laser profile at a given single point,
as a consequence of which theoretical models of bubble structure
are valid only for the rear half of the bubble regime.” Studies of
test particle dynamics using the equation for the bubble boundary
require more complicated numerical calculations of the electromag-
netic field at each time step, and the final results still disagree slightly
with those of PIC simulations. Fortunately, in the case of transverse
self-injection, the injection process occurs mainly in the rear half
of the bubble regime, and the distribution of the bubble field does
not depart from axial symmetry, which means that the theoretical
description of the effect of initial spin orientation retains its validity.

B. Longitudinal self-injection mechanism

For longitudinal injection in the quasi-1D regime, the elec-
tron spin is mainly affected by the laser field, according to
Ref. 41. Because the laser evolution in the plasma is a nonlinear phe-
nomenon, it is difficult to derive an appropriate expression for the
laser field. In addition, the laser profile does not vary significantly
during the interaction with the injected electrons. It is therefore rea-
sonable to consider the effects of the electron-laser interaction in
vacuum. The electric field of the laser in the y direction is given
by Eq. (7). The other electric and magnetic field components can
be obtained using E. = (i/ko)(OE,/dy), B=—(i/wo)V x E in the
paraxial approximation.””” Similar to the case of the bubble fields,
the electrons are at rest in front of the laser field at a position
(%05 ¥4»20), and their spins s are initially located in the xy plane, i.e.,
ﬁo = 0°. The laser parameters are ag = 6, wo = 204, and 7 = 17 fs.

The final s distributions at ¢ = 300 fs of electrons with initial
positions (y,,z0) and initial spin directions 6y = 0°, 45°, and 90°
are shown in Figs. 6(b)-6(d), respectively. The spins of electrons
that are initially near the laser axis remain nearly unchanged after

14 7 7 14 14 -7 7 14

0 0
Yo(d) YoV
FIG. 6. (a) Distribution of final energy y of electrons with initial positions (y,, Zo)
after interacting with the laser in vacuum, according to the test particle dynamics
simulation. [(b)~(d)] Distributions of s of electrons with initial positions (yy, zo)
and initial polarization directions 6y = 0°, 45°, and 90°, respectively. The laser
parameters are ap = 6, wq = 202, and = = 17 fs. The initial positions of electrons
within ro = £ are marked by the white circles.
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interaction with the laser pulse, as indicated by the white circles.
During the longitudinal injection process, the trajectories of the
accelerated electrons are close to the laser axis, as a consequence of
which the net depolarization effect is almost zero, even though the
laser field can cause some spin precession of the electrons. When the
electrons reach the tail of the bubble, the influence of the bubble field
on spin precession can also be ignored, because the transverse elec-
tromagnetic field and the transverse velocity of the electrons are very
small.”!

With increasing distance from the electron initial position to
the laser axis, the situation clearly changes, as depicted in Fig. 6.
The distribution of electron energy is axially symmetric, as revealed
in Fig. 6(a), and the electron dynamics can be explained by the
ponderomotive potential model. The transverse and longitudinal
ponderomotive forces induced by the laser propagating along the
x axis can be derived as F, and F,.° The transverse ponderomo-
tive force is almost off-axis and the electron is always expelled
transversely, while the longitudinal ponderomotive force is basically
positive and hence accelerates the electron longitudinally. Thus, the
electrons have a transverse velocity ¥, and a longitudinal velocity
¥y. The equivalent transverse (E,) and longitudinal (Ex) electric
fields are defined on the basis of the ponderomotive model. More
importantly, the electron velocity ¥, is zero, and the equivalent
electric field E, is also zero.
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FIG. 7. Evolution of electron spin in each direction for typical electrons with initial
positions (¥, 20) = (0.0,8.01) (a) and (8.01, 0.0) (b). The laser parameters and
initial spin state are the same as in Fig. 6(d).
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During the interaction between the laser and the electrons, the
electrons gain net energy, and their spins change simultaneously.
According to the TBMT equation, Q o< ¥ x E, and it can be derived
that Q = Q. Therefore, the distribution of electron spin is axially
symmetric in the case of 6y = 0°, as observed in Fig. 6(b). When the
initial spin direction is changed, the final distribution of electron
spin is also altered, which is similar to the case of the bubble field,
as illustrated in Figs. 6(c) and 6(d).

To confirm the results of the theoretical analysis, the spin evo-
lution of two electrons with typical initial positions is presented in
Fig. 7. Here, the initial electron spin is aligned with the y axis. The
other parameters are same as those in Fig. 6(d). For an electron ini-
tially located on the z axis, the spin direction is always parallel to the
precession frequency Q. Then, s, quivers in the laser field, while
the net depolarization is zero, as demonstrated in Fig. 7(a). An elec-
tron initially located on the y axis oscillates in the xy plane under
the action of the laser field, with its spin always perpendicular to the
precession frequency ﬂ,, and hence s, is always zero, as shown in
Fig. 7(b).

Figure 8 displays the related results of PIC simulation. Here,
the initial laser amplitude is ao = 6, the laser waist is wo = 20, the
laser pulse duration is 7 = 17 fs, the length of the up-ramp transi-
tion is L; = 45, the density of the plateau is 19 = 0.04n., and the
other parameters are same as those in the case of transverse injec-
tion. Electrons with energy larger than 35 MeV at 360 fs are chosen
as the accelerated electrons for the longitudinal injection process
in the 2D case. As shown in Figs. 8(a) and 8(b), the 2D simula-
tion results confirm those of the theoretical analysis based on the
ponderomotive model. The effect of initial spin orientation can be
ignored at the final time. While the electrons interact with the laser,
the electron spin is affected by the laser directly at around 200 fs.
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FIG. 8. [(a) and (b)] Evolution of polarization (s ) for accelerated electrons in
the longitudinal injection case with different pre-polarization angles 6, from 2D
PIC simulations in the xy and xz planes, respectively. Electrons with 146.01 < x
< 147.02, |y| < 51 (or |z| < 5)) and Ex > 35 MeV at 360 fs are selected in the 2D
case in the xy (or xz) plane. [(c) and (d)] Relationship between initial spin direction
6 and (s ) of accelerated electrons from 2D and 3D PIC simulations, respectively.
Electrons with Ex > 100 MeV at 500 fs are chosen as accelerated electrons in
the 3D PIC simulation. Here, the laser parameters are ag = 6, wy = 20\. and
7 = 17 fs. and the plasma density is ng = 0.040n; and Ly = 45).
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The electrons do not gain net energy after interacting with the laser,
and the net depolarization effect is nearly zero for the longitudinal
injection scheme, as presented in Figs. 8(c) and 8(d). Compared with
the case of transverse injection, longitudinal injection is more sta-
ble in providing an electron beam with high polarization, and, in
particular, independent of the direction of initial spin.

IV. CONCLUSION

The effect of initial spin orientation on the polar-
ization of accelerated electrons in the LWFA regime has
been investigated theoretically and numerically using the
Thomas-Bargmann-Michel-Telegdi equation. It has been found
that the final spin polarization is dependent upon the self-injection
process, i.e., whether this is transverse or longitudinal self-injection.
In the case of transverse injection, the electron spin is mainly
affected by the bubble field, and the direction of the precession
frequency is fixed in the vertical plane of the electron trajectory. The
spins of several electrons do not move when their spins are initially
aligned with the direction of precession frequency, and consequently
the final polarization of the accelerated electron beam to depend
on its initial spin orientation. However, in the case of longitudinal
injection, the dynamics of electron spin are mainly determined by
the laser field. Because the net effect of the laser field is negligible,
the polarization of the accelerated electrons is independent of their
initial spin status. The results of 3D PIC simulation are consistent
with those from test particle dynamics simulation and theoretical
analysis. This study indicates that the longitudinal self-injection
mechanism exhibits more stability in obtaining a bunch of electrons
with high polarization, compared with transverse self-injection.
Furthermore, the present investigation of the effects of bubble and
laser fields on electron spin should provide useful guidance for
studies of polarization dynamics in other acceleration schemes.
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