001     1048120
005     20251202203135.0
024 7 _ |a 10.1073/pnas.2500697122
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04511
|2 datacite_doi
037 _ _ |a FZJ-2025-04511
082 _ _ |a 500
100 1 _ |a Mindlin, Julia
|0 0000-0002-5911-9984
|b 0
|e Corresponding author
245 _ _ |a Explaining and predicting the Southern Hemisphere eddy-driven jet
260 _ _ |a Washington, DC
|c 2025
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764676931_15938
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The summertime eddy-driven jet (EDJ) in the Southern Hemisphere is a critical mediatorbetween regional climate and large-scale phenomena, guiding synoptic systems thatshape weather patterns. Uncertainties in global climate models (GCMs)-particularlyin projecting changes in remote drivers like tropical warming, stratospheric polarvortex strengthening, and asymmetric tropical Pacific warming-hinder predictions ofEDJ trends and associated regional outcomes. In this study, we develop a causalframework that combines observations, reanalysis datasets, and storylines estimatedfrom the Coupled Model Intercomparison Project (CMIP) projections to attributepast EDJ changes and predict plausible future trajectories. Our findings indicate thattropical warming has evolved along the low end of plausible CMIP trajectories, whilethe stratospheric polar vortex shows robust strengthening, both strongly influencingobserved EDJ trends. Our results suggest that 50% of the observed EDJ latitudeshift can be directly attributed to global warming (GW), and the remaining 50% toremote drivers whose attribution toGWremains uncertain. Importantly,GCMsappearto accurately estimate the observed latitudinal shifts but underestimate the observedstrengthening of the EDJ, while the proposed storylines are able to capture the observedtrend. By integrating causal inference with climate storylines, our approach narrowsthe divide between attribution and prediction, offering a physically grounded methodto estimate plausible pathways of future climate change.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Shepherd, Theodore G.
|0 P:(DE-Juel1)192332
|b 1
700 1 _ |a Osman, Marisol
|0 0000-0002-6275-1454
|b 2
700 1 _ |a Vera, Carolina S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kretschmer, Marlene
|0 0000-0002-2756-9526
|b 4
773 _ _ |a 10.1073/pnas.2500697122
|g Vol. 122, no. 29, p. e2500697122
|0 PERI:(DE-600)1461794-8
|n 29
|p e2500697122
|t Proceedings of the National Academy of Sciences of the United States of America
|v 122
|y 2025
|x 0027-8424
856 4 _ |u https://juser.fz-juelich.de/record/1048120/files/Mindlin2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048120
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192332
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21