

Comparison of standard and modified ⁹⁹Mo/^{99m}Tc radionuclide generators

M. Michel 1 • F. Sudbrock 2 · B. Neumaier 3 · K. Eberhardt 4 · E. Strub 1

Received: 5 May 2025 / Accepted: 22 September 2025 / Published online: 9 October 2025 © The Author(s) 2025

Abstract

^{99m}Tc is the most widely used radionuclide in medical diagnostics and typically obtained from high-specific-activity (HSA) ⁹⁹Mo produced in nuclear reactors. However, recent reactor shutdowns have led to supply shortages and prompted efforts to implement alternative production methods. One promising approach is neutron activation of ⁹⁸Mo, which yields low-specific-activity (LSA) ⁹⁹Mo. Since conventional Al₂O₃-based ⁹⁹Mo/^{99m}Tc generators are designed for HSA ⁹⁹Mo, adaptations are required for LSA ⁹⁹Mo usage. In this study, we evaluated the feasibility of modifying existing Al₂O₃-based ⁹⁹Mo/^{99m}Tc generators for use with LSA ⁹⁹Mo, anticipating production at the planned high brilliance neutron source (HBS) at Forschungszentrum Jülich. Key modifications included adjustments to the amount of Al₂O₃ on the column and the elution volume of ^{99m}Tc to enhance ⁹⁹Mo adsorption and ^{99m}Tc elution efficiency. The performance of the modified "mock-up" system was compared with a standard clinical generator. The results demonstrated that only minor modifications are required for LSA ⁹⁹Mo to be effectively utilized in a future generator, with elution efficiencies remaining comparable to conventional generators, while maintaining parameters like size, form, number, activity of the individual generator comparable. However, ⁹⁹Mo breakthrough levels exceeded regulatory limits, highlighting the need for further optimization. Nevertheless, these findings support the feasibility of using LSA ⁹⁹Mo in clinical applications with minimal changes to existing infrastructure.

 $\textbf{Keywords} \ \ \text{Technetium-99} \ m \cdot Molybdenum-99 \cdot Radionuclide \ generators \cdot Adsorbent \cdot Alumina \ column \cdot Neutron \ activation \cdot Medical \ radionuclide \ production$

Introduction

Aim of this work

The aim of this work is to demonstrate it is feasible to develop a separation procedure that uses not more than

- M. Michel mmichel4@smail.uni-koeln.de
- Division of Nuclear Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
- Faculty of Medicine, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, and University Hospital Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine – Nuclear Chemistry, (INM-5), Jülich, Germany
- Johannes Gutenberg University Mainz, Research Reactor TRIGA Mainz, Mainz, Germany

100 mg of Mo. We consider that 100 mg of low-specific-activity (LSA) 99 Mo is sufficient for commercial generators (see below). This will allow that the established generators can be modified without drastically changing key parameters like column size, generator size or elution volume. This shall ensure that the current system of generator handling and distribution can remain mainly unchanged. To achieve this, we developed a modified Al_2O_3 -based "mock-up" generator system in a laboratory scale. The modifications of the existing generator system for proper clinical use are planned for the future. We compare our mock-up system with a conventional design, focusing on Mo adsorption characteristics, elution efficiency, and regulatory compliance.

1.2. 99mTc/99Mo nuclide generators in general.

Technetium-99 m (^{99m}Tc) is the most widely used radionuclide in nuclear medicine due to its short half-life (6 h) and ideal gamma emission energy (140.5 keV) for single photon emission computed tomography (SPECT) imaging [2,

3]. It is obtained from the decay of molybdenum-99 (99 Mo, $T_{1/2} = 66$ h), which is typically produced in nuclear reactors and supplied via radionuclide generators. Conventional 99 Mo/ 99m Tc generators rely on high-specific-activity (HSA) 99 Mo, which is separated from the fission products of highly-enriched uranium-235 (235 U), and adsorbed onto aluminum oxide (Al_2O_3) separation columns [4]. Roughly 5–10 g of Al_2O_3 is used in this solvent extraction technique, depending on the total activity of 99 Mo [5]. The 99m Tc formed during decay of 99 Mo can then be eluted with physiological saline solution (0.9% NaCl). A generator with 20 GBq 99 Mo and an elution scheme with 2 "milkings" each day provides roughly a total of 160 GBq over a lifespan of 7 days [6].

An established process for the separation of fission-based ⁹⁹Mo from ²³⁵U is the ROMOL-99 process that has been developed at the Radio-Isotope department in Dresden-Rossendorf [1]. The basic principles of this process are seen in Fig. 1.

Over the past 2 decades, increasing efforts have been directed towards alternative production methods for ⁹⁹Mo as shown in Fig. 2. [1, 7–11] This shift gained momentum following the 2008 global ⁹⁹Mo supply crisis, when 4 of the 6 major production reactors temporarily ceased operation. Compared to nuclear reactor produced ⁹⁹Mo with HSA (high specific activity) – schemes 1, 2 & 3 in Fig. 2 in Sect. "Generation of 99Mo via neutron activation and separation methods of 99Mo/99mTc", the other schemes will yield LSA (low specific activity) ⁹⁹Mo. The general advantage of neutron activation of Mo is that it eliminates the need for uranium targets and their associated nuclear waste. However, unlike reactor-based HSA 99Mo production, activation produces low-specific-activity (LSA) 99Mo, requiring significantly larger Mo quantities for equivalent ^{99m}Tc yields. One possibility to optimization is to use Mo targets enriched in stable isotopes ⁹⁸Mo or ¹⁰⁰Mo (schemes 2, 4 and 5). Scheme 5 (on site production) cannot be applied within the established generator concept. Schemes 2 and 4 will generally increase the yield, but we consider this not very practicable because it would be necessary to reprocess the irradiated material.

Generation of ⁹⁹Mo via neutron activation and separation methods of ⁹⁹Mo/^{99m}Tc

In this work we consider a scheme like 1 but with relying on natural Mo and the irradiation epithermal neutrons. The decrease in yield to 20% (changing from ⁹⁸Mo to ^{nat}Mo) can be compensated by the enhanced cross section of epithermal neutrons.

The "high-brilliance neutron source (HBS)" system, currently under development at Forschungszentrum Jülich aims to generate ⁹⁹Mo through a compact accelerator-driven neutron source [12].

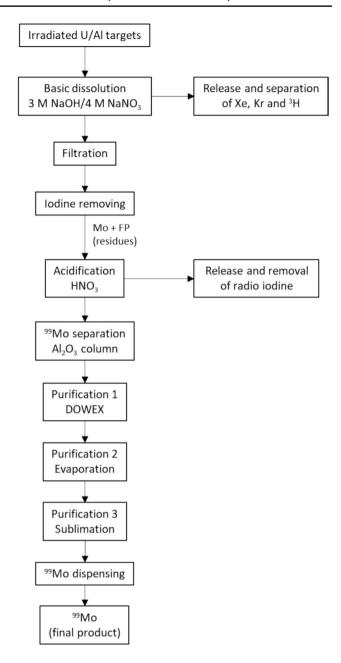
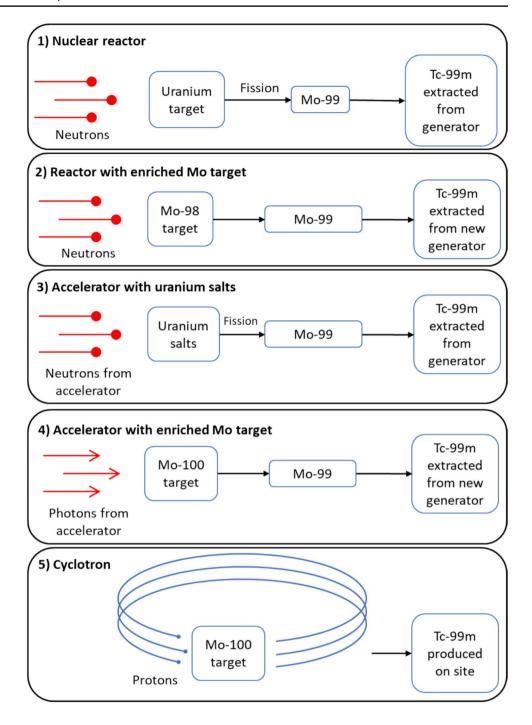
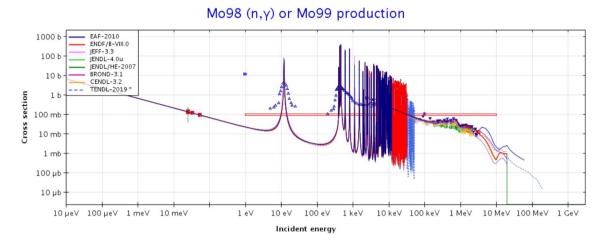



Fig. 1 Process flow scheme of the ROMOL-99 process to separate fission-based $^{99}\rm{Mo}$ for production. Adapted from [1]

A distinctive feature of 99 Mo production at HBS will be the use of neutron fluxes in the epithermal region. We expect a thermal neutron flux of around 9.5 10^{12} N/s·cm² and an epithermal neutron flux of 3.6 10^{11} N/s·cm² with a lead reflector on the HBS system. Since the epithermal neutron cross-section for the 98 Mo neutron capture reaction (6.7 barn) is about 50 times higher than the thermal neutron cross-Sect. (0.13 barn) (Fig. 3) [8], epithermal neutron activation of natural or enriched 98 Mo can significantly enhance the yields and specific activities of 99 Mo produced via 98 Mo(n, γ) 99 Mo reaction [13, 14].


Fig. 2 Scheme of the several production processes of ⁹⁹Mo. Adapted from [7]

Furthermore, in relation to activation, an effective cross section of up to 0.5 barn has already been achieved in the work of Matyskin and co-workers with epithermal neutrons, allowing specific activities of 5 GBq/g for natural Mo. It is aimed at the HBS based accelerator system to reach a specific activity of 5 GBq/100 mg of Mo. 5 GBq is currently the minimum activity of a commercial generator. Therefore, we chose 100 mg of irradiated Mo as the reference value of our modified "mock-up" generator system [12, 15].

However, the specific activity of LSA ⁹⁹Mo (~1–10 Ci/g) [16], thus obtained is still several orders of magnitude below that of reactor-produced HSA ⁹⁹Mo (>1,000 Ci/g) [16], which necessitates modification of existing Al₂O₃-based ⁹⁹Mo/^{99m}Tc generators to maintain efficiency while ensuring compliance with regulatory and practical limits. In this regard, key challenges include i) maintaining generator size within practical limits for hospital use while ensuring compliance with radiation protection regulations, ii) achieving elution volumes that align with the clinical workflow, iii)

Fig. 3 Neutron activation calculations for the ${}^{98}\text{Mo}(n,\gamma){}^{99}\text{Mo}$ reaction [18]

ensuring that Mo breakthrough (MBT) meets regulatory standards, which specify maximum allowable 99 Mo activity levels in the eluate of < 0.015% (United States Pharmacopeia) or < 0.1% (European Pharmacopeia) with respect to the activity of eluted $^{99\text{m}}$ Tc [17] and (iv) the regulatory of the respective pharmaceutical laws.

To address these issues, several alternative $^{99}\text{Mo/}^{99\text{m}}\text{Tc}$ separation methods have already been investigated. Ramadan et al. [19] evaluated nano $\text{Zr}(\text{OH})_4$ gels as sorbent materials, achieving ^{99}Mo adsorption capacities tenfold higher than with Al_2O_3 while maintaining $^{99\text{m}}\text{Tc}$ elution efficiencies of $\sim 83\%$ and ^{99}Mo breakthrough of only 0.005%.

Another approach by Chattopadhyay et al. [20] utilized solvent extraction with methyl ethyl ketone followed by column chromatography with Al₂O₃ yielding 78–90% of the ^{99m}Tc activity with minimal ⁹⁹Mo contamination of 10⁻⁴%.

Ion-exchange chromatography using Dowex-1- \times 8 resin and tetrabutylammonium bromide (TBAB) elution followed by column chromatography with Al₂O₃ enabled 90% ^{99m}Tc recovery with similarly low ⁹⁹Mo contamination (<10⁻⁴%) [21].

Thermochromatographic separation has also been explored, particularly using enriched [\$^{100}\$Mo]MoO_3 samples which can be almost completely recycled after the process. Studies by Kawabata et al. and Nagai et al. [22, 23] demonstrated that \$^{99}mTc yields of around 90% could be achieved with multiple elutions.

These separation procedures that have been described in literature exhibit stronger adsorption of Mo and/or a higher specific capacity compared to the common generators using ${\rm Al_2O_3}$ with an adsorption capacity of Mo of < 20 mg Mo/g column material. The work of Ramadan et al. shows that alternative other column materials can achieve significantly higher adsorption capacities. However, within the aim of this work, taking into account individual factors such as optimizing the

irradiation conditions, we can have a greater influence on the total amount of 99 Mo generated. To accomplish this, a more efficient and faster separation method involving Mo sample dissolution, adsorption and elution can lead to a relocation of the end of bombardment, which can achieve higher total activities of 99 Mo. An important factor is the Al_2O_3 column with an optimized amount of column material (~ 5 g).

Despite these promising results, a key disadvantage of all alternative separation methods is that they would necessitate the design of new generator systems and, consequently, large investments into infrastructure. As such this study evaluated the feasibility of modifying existing Al₂O₃-based ⁹⁹Mo/^{99m}Tc generators for use with LSA ⁹⁹Mo produced by epithermal neutron activation at the HBS system. We hypothesize that optimized irradiation conditions could yield LSA ⁹⁹Mo with specific activities sufficient to adapt existing ⁹⁹Mo/^{99m}Tc generator systems with only minor modifications, ensuring a stable and sustainable supply of ^{99m}Tc for medical applications while maintaining compatibility with current clinical infrastructure.

Considering the utilization of epithermal neutrons form the HBS, an optimization of the current generator system with Al_2O_3 can be might be sufficient to obtain LSA generators, even with natural Mo as a target material. Taking into account the practical challenges to establish new distribution infrastructure, we consider this to be the most promising strategy to reach an equal specific activity of at least 5 GBq/100 mg for 99 Mo.

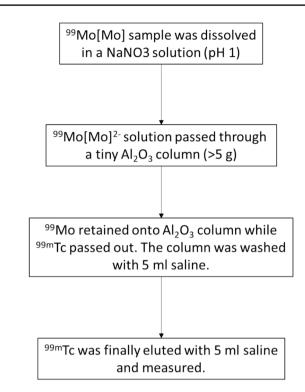
Materials and methods

Materials

The Al₂O₃ powder used as column material was obtained from 'J.T. Baker' (Batch number '0000288122'). Ammonium heptamolybdate tetrahydrate used as molybdenum source was obtained from 'Merck' (CAS-No. 12054–85–2). Chromatography columns, with a length of 10.5 cm and a diameter of 1 cm were obtained from 'ThermoScientific'.

Irradiation and ⁹⁹Mo preparation

To simulate LSA 99 Mo production as expected from the HBS system, ammonium heptamolybdate tetrahydrate as a model compound was irradiated at the TRIGA research reactor at the Johannes Gutenberg University Mainz. The irradiation was performed for 40 min at a neutron flux of $1.7 \cdot 10^{12}$ cm⁻² s⁻¹. An amount of 1.5 g of ammonium heptamolybdate, which results in the amount of 815 mg of Mo, was irradiated. Under these conditions, a very low specific activity (~ 0.04 mCi/g) is obtained.


Four our mock-up experiments, we each used 100 mg of this to resemble the samples which are expected to be finally obtained at the HBS, in which 100 mg Mo are expected to show a specific activity of 5 GBq/100 mg of Mo, see above [15, 24].

Measurement and analysis

⁹⁹Mo and ^{99m}Tc activities were measured using a Ge(Li) semiconductor gamma detector and analyzed with Gamma-Vision software. Samples from the conventional generator system were measured using dose calibrators for high activity readings or (after partial decay of ^{99m}Tc) a high purity germanium (HPGe) detector and analyzed with Gamma-W software.

The general procedure for dissolution of the irradiated Mo samples, column loading and elution of ^{99m}Tc from the modified "mock-up" generator system is summarized and Fig. 4.

For each experiment a total of 100 mg of irradiated Mo was dissolved in a solution of NaOH/HNO₃ (pH 1). The NaOH was added to dissolve Mo in the form of sodium molybdate (Na₂MoO₄) while addition of HNO₃ was used to lower the pH to 1, ensuring optimal adsorption onto the Al₂O₃ columns. The dissolved Mo was then loaded onto columns containing 5.0 g of Al₂O₃ and ^{99m}Tc was eluted with 0.9% saline solution in 5 ml fractions. The eluate was collected in 10 mL vials and used for subsequent activity measurements, where the ^{99m}Tc activity and the

Fig. 4 General procedure for column loading and elution of ^{99m}Tc from the modified "mock-up" generator system

Fig. 5 General setup of the experiments with the modified ${\rm Al_2O_3}$ columns. 3 times (at 24-h intervals) using 5 ml of saline solution and the elution efficiency was determined by comparing the measured $^{99{\rm m}}{\rm Tc}$ activity in the eluate with the expected decay-corrected activity on the column

⁹⁹Mo breakthrough were investigated and determined. The general setup of the experiments with the adapted Al₂O₃ columns is exemplified in Fig. 5, where experiments were performed to determine the ideal amount of Al₂O₃ for the maximum Mo adsorption capacity.

Radionuclide generator experiments

Determination of elution efficiency

Elution efficiency was determined using 3 identical Al_2O_3 columns, loaded with 100 mg of irradiated Mo. Each column was eluted with 5 mL of 0.9% saline solution, and the collected eluates were analyzed for 99m Tc activity. The elution efficiency was then determined by comparing the measured 99m Tc activity in the eluate with the expected activity on the column based on calculated decay-corrected values. The elution process was repeated three times at 24-h intervals. After this period the 99m Tc activity on the column reaches $\sim 93\%$ of the 99 Mo activity due to 4 half-lives of 99m Tc had passed.

Determination of elution profile

To evaluate the elution profile, 3 identical ${\rm Al_2O_3}$ columns loaded with 100 mg of irradiated Mo were subjected to sequential elutions using 2 mL fractions of saline solution, repeated 10 times per elution cycle at 24-h intervals. The collected eluates were analyzed for their $^{99\rm m}$ Tc activity, and the percentage elution efficiency was calculated relative to the expected activity remaining on the column.

⁹⁹Mo breakthrough measurements

 99 Mo breakthrough was assessed by eluting an Al_2O_3 column loaded with 100 mg of irradiated Mo every 24 h over 5 days using 5 mL of 0.9% saline solution. The activity of 99 Mo in each eluate was measured and compared to the total amount of 99 Mo adsorbed onto the column. The breakthrough percentage was calculated by determining the ratio of 99 Mo activity in the eluate to the initial activity loaded onto the column.

Decay curve of 99mTc eluate

To confirm the expected radioactive decay behavior of the eluted ^{99m}Tc, a complete decay curve was recorded over three weeks, covering approximately 10 half-lives of the parent ⁹⁹Mo isotope. A sample containing approximately 100 MBq of ^{99m}Tc was measured at multiple time points. Early measurements (first 48 h) were performed using a dose calibrator, while subsequent measurements were conducted using a HPGe detector for enhanced precision.

Results and discussion

Optimization of the Al₂O₃ column system for ⁹⁹Mo adsorption

Modifications to the generator system focused on optimizing Mo adsorption on the Al₂O₃ column while ensuring efficient elution of ^{99m}Tc. The primary objective was to achieve these improvements with minimal deviation from conventional radionuclide generator designs to maintain practical applicability. Through a series of initial experiments, an Al₂O₃ amount of 5.0 g Al₂O₃ per column was found to be optimal for maximizing Mo adsorption in the system as shown in Table 1. In these experiments, the activity of ⁹⁹Mo that was contained in a first extraction with NaCl solution (5 mL) was compared to the total activity of 99Mo on the column (see Table 1). The data indicate that with 2 g of Al₂O₃, the column capacity is clearly surpassed while when 5 g of Al₂O₃ are used, less than 1% of the total ⁹⁹Mo activity is found in the first elution (following elutions show less activity, see below).

To evaluate the performance of the "mock-up" Al₂O₃-based ⁹⁹Mo/^{99m}Tc generator, additional experiments were conducted to determine elution efficiency, elution profiles, and minimize ⁹⁹Mo breakthrough levels.

Elution efficiency and elution profile of ^{99m}Tc in the modified "mock-up" generator system

An elution curve of ^{99m}Tc was investigated to determine the optimal elution volume to capture the highest possible activity and to determine the elution efficiency of the adapted system. Therefore, experiments were performed with 3 columns of the same set-up, where elution was carried out a total of 3 times at an interval of 24 h. This was done because it can be assumed that after 24 h ⁹⁹Mo and ^{99m}Tc are in equilibrium. The activity of ⁹⁹Mo was measured after adsorption on the column and the expected activities after 24, 48 and 72 h respectively were calculated. The ⁹⁹Mo activity obtained in

Table 1 Different Al_2O_3 amounts and the respective 99 Mo activity ratios of the first elution step before further optimizations of the provided column generators in this work

Amount of Al ₂ O ₃ [g]	⁹⁹ Mo activity in first NaCl elution [%]	
2.0	5.0	
2.5	4.7	
3.0	2.5	
3.5	1.0	
5.0	0.5	

this way also corresponded to the expected ^{99m}Tc activity on the column in the efficiency calculations. After elution with 5 ml of the saline solution, the ^{99m}Tc activities of the eluate were compared with that expected on the Al₂O₃ column and the efficiency was thus determined. The received data for the elution efficiency are shown in Fig. 6. As shown in Fig. 6, on average, 80–90% of the ^{99m}Tc activity, which was expected to be on the column after ⁹⁹Mo/^{99m}Tc activity equilibrium, was successfully eluted from the column. A slight decrease in elution efficiency was observed after repeated elutions, but the efficiency remained above 80% throughout the experiments. For the experiments to determine the elution curve of ^{99m}Tc, 3 Al₂O₃ columns were prepared with an adapted system and these were washed 10 times each with 2 ml of saline solution three times at 24 h intervals. The eluates were measured for their ^{99m}Tc activity and the percentage ratio to the expected activity on the column was calculated. The data from the elution curve of 99mTc from the modified "mock-up" Al₂O₃ radionuclide generator is shown in Fig. 7. These elution curves determined by sequential elution with 2 ml fractions indicated that the majority of ^{99m}Tc activity (~80%) was eluted within an elution volume of 6 ml. However, it seems that the elution efficiency shown in Fig. 6 with a continuous flow is somewhat higher (~80-85% in 5 ml). Both elution schemes provided relevant 99mTc activities, while maintaining a manageable elution volume.

⁹⁹Mo breakthrough in the "mock-up" generator system

Breakthrough of ⁹⁹Mo into the eluate was assessed over a period of 5 days. As shown in Fig. 8, the average ⁹⁹Mo breakthrough into the eluate was 0.35%, with variations depending on the time of elution. Due to the dead volume of the column, very low ⁹⁹Mo breakthrough was observed during the first elution 24 h after column loading. The highest

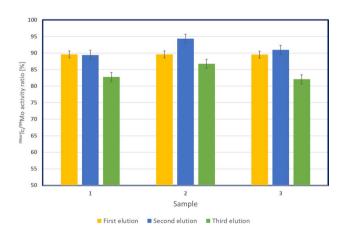
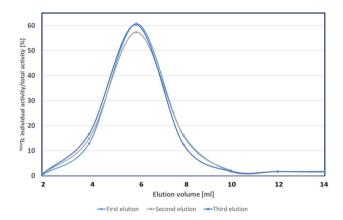



Fig. 6 Determination of the elution efficiency of 99m Tc from the "mock-up" generator system. Each column was eluted

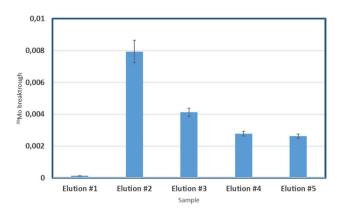


Fig. 7 Representative elution curves of ^{99m}Tc from the "mock-up" generator system. 3 elution cycles with 10 successive 2 ml fractions of saline solution per cycle were performed at 24-h intervals and the elution efficiencies for each fraction were plotted as a function of the total elution volume

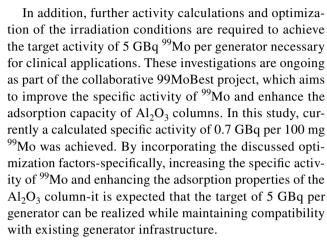
breakthrough value ($\sim 0.8\%$) was observed after 48 h. However, breakthrough levels gradually decreased over subsequent elutions, reaching approximately 0.25% after multiple elution cycles as shown in Fig. 8. Despite this reduction, breakthrough values remained above the European Pharmacopoeia (EuPharm) limit of < 0.1% for medical use, which require more experiments for further optimization [17].

Comparison with conventional ⁹⁹Mo/^{99m}Tc generators

To assess the practical viability of the modified system, its performance was compared with that of a conventional Al₂O₃-based ⁹⁹Mo/^{99m}Tc generator at the University Hospital Cologne. Key parameters, including ⁹⁹Mo breakthrough, elution volume, and elution duration, are summarized in Table 1.

Fig. 8 Determination of ⁹⁹Mo breakthrough in the "mock-up" generator system. Elutions were performed every 24 h over 5 days using 5 ml of saline solution per elution

Table 2 Comparison of the data from a conventional ⁹⁹Mo/^{99m}Tc radionuclide generator with the data obtained using the modified system and goal that should be reached for an actual commercial modified generator system


	Conventional generator system	"Mock-up" generator	Modified gen- erator system (goal)
99Mo breakthrough	<1 ppm	~0.2–0.3%	(<0.1%)
Elution volume	5 ml	5–7 ml	(5 ml)
Elution duration	1-2 min (under vacuum)	5–7 min	(2 min)

The conventional generator exhibited very low ⁹⁹Mo breakthrough (<1 ppm, ~40 Bq), well below the 0.1% regulatory limit, whereas this modified system showed higher breakthrough (0.2–0.3%), requiring further refinement. The elution volume remained almost consistent (5–7 ml) between both systems, confirming that the modifications did not impact this parameter. In addition, the "mock-up" system required slightly longer elution times (5–7 min vs. 1–2 min under vacuum), but this difference should be negligible for practical applications (Table 2).

A complete decay curve of ^{99m}Tc activity of the conventional generator system was recorded over a period of 3 weeks, covering approximately ten half-lives of ⁹⁹Mo. The obtained data Fig. 1 in Supplementary information, confirmed that the measured decay behavior follows the known half-lives of ^{99m}Tc (6 h) and ⁹⁹Mo (66 h). Early high-activity measurements (first 48 h) from a dose calibrator were consistent with later HPGe detector measurements, confirming the accuracy of the readings.

Conclusion and outlook

The findings of this study demonstrate that the "mock-up" Al₂O₃-based radionuclide generator system is highly promising for accommodating LSA 99Mo produced via epithermal neutron activation. When comparing the performance of the modified system with a conventional 99Mo/99mTc radionuclide generator, key parameters such as elution efficiency, elution volume, and elution duration were found to be at comparable levels, even with a likely increase in the amount of column material. This suggests that only minor modifications to the established Al₂O₃ generator system are necessary for its adaptation to the planned HBS production route for ⁹⁹Mo. However, ⁹⁹Mo breakthrough remains higher than the regulatory limit of 0.1%, currently ranging between 0.2 and 0.3%. This indicates that further optimization of column material quantity and chemical conditions – such as solvent selection and Mo adsorption behavior – will be necessary to reduce breakthrough to acceptable levels. This will be done in upcoming experiments with minimal change to the elution column, maintaining the overall mass and volume of the columns.

Moving forward, our efforts will focus on i) reducing 99 Mo breakthrough by refining the column's chemical environment and exploring alternative solvent conditions, ii) optimizing irradiation conditions to maximize the specific activity of neutron-activated 99 Mo, and iii) enhancing Mo adsorption on Al_2O_3 through targeted modifications in column composition and material properties. Also in the next steps, a vacuum assisted setup will be used to obtain comparable conditions as are used in commercial generators (see Sect. "Comparison with conventional 99Mo/99mTc generators").

These refinements will help to ensure that LSA ⁹⁹Mo produced via epithermal neutron activation can be efficiently utilized in clinical settings using only minor modifications to the current generator system. The successful implementation of this approach would provide a sustainable and reliable production pathway for ⁹⁹Mo, helping to mitigate global supply challenges and strengthen the long-term availability of ^{99m}Tc for diagnostic nuclear medicine.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10967-025-10423-5.

Acknowledgements This work is part of the '99MoBest' joint project and was funded by the Federal Ministry of Education and Research (BMBF) under funding number 02NUK080A.

Funding Open Access funding enabled and organized by Projekt DEAL. Bundesministerium für Bildung und Forschung, 02NUK080A

Declarations

Competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References:

- Muenze R, Beyer GJ, Ross R, Wagner G, Novotny D, Franke E, Jehangir M, Pervez S, Mushtaq A (2013) The fission-based ⁹⁹Mo production process ROMOL-99 and its application to PINSTECH Islamabad. Sci Technol Nucl Install 2013:1–9
- Rathmann SM, Ahmad Z, Slikboer S, Bilton HA, Snider DP, Valliant JF (2019) The radiopharmaceutical chemistry of technetium-99m in radiopharmaceutical chemistry. Springer International Publishing, Cham
- Lavely WC, Goetze S, Friedman KP, Leal JP, Zhang Z, Garret-Mayer E, Dackiw AP, Tufano RP, Zeiger MA, Ziessman HA (2007) Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase ^{99m}Tc-sestamibi parathyroid scintigraphy. J Nucl Med 48:1084–1089
- 4. Richards P, Tucker WD, Srivastava SC (1982) Technetium-99m: an historical perspective. Int J Appl Radiat Isot 33:793–799
- Saha GB (2018) "Radionuclide generators", in fundam nucl pharm. Springer International Publishing, Cham, pp 77–92
- Zolle I (2007) Performance and quality control of the 99Mo/99mTc generator in technetium-99m pharmaceuticals preparation and quality control in nuclear medicine. Springer, Berlin
- Van Noorden R (2013) Radioisotopes: the medical testing crisis. Nature 504:202–204
- Hasan S, Prelas MA (2020) Molybdenum-99 production pathways and the sorbents for ⁹⁹Mo/^{99m}Tc generator systems using (n, γ)⁹⁹Mo: a review. SN Appl Sci 2:1782
- Pillai M, Knapp FF (2011) Overcoming the ^{99m}Tc shortage: are options being overlooked? J. Nucl. Med. Off. Publ. Soc. Nucl, Med
- Froment P, Tilquin I, Cogneau M, Delbar T, Vervier J, Ryckewaert G (2002) The production of radioisotopes for medical applications by the adiabatic resonance crossing (ARC) technique. Nucl Instrum Methods Phys Res A 493:165–175
- Ruth TJ (2014) The medical isotope crisis: how we got here and where we are going. J Nucl Med Technol 42:245–248

- Gutberlet T, Rücker U, Mauerhofer E, Zakalek P, Cronert T, Voigt J, Baggemann J, Li J, Doege P, Böhm S, Rimmler M, Felden O, Gebel R, Meusel O, Podlech H, Barth W, Brückel T (2020) Sustainable neutrons for today and tomorrow—the Jülich high brilliance neutron source project. Neutron News 31:37–43
- Ryabchikov AI, Skuridin VS, Nesterov EV, Chibisov EV, Golovkov VM (2004) Obtaining molybdenum-99 in the IRT-T research reactor using resonance neutrons. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 213:364–368
- Matyskin AV, Ridikas D, Skuridin VS, Sterba J, Steinhauser G (2013) Feasibility study for production of ^{99m}Tc by neutron irradiation of MoO₃ in a 250 kW TRIGA Mark II reactor. J Radioanal Nucl Chem 298:413–418
- D. Shabani, (2024) Production and processing of ⁹⁹Mo using a high-current accelerator-driven neutron source, MTAA16 - International Conference on Modern Trends in Activation Analysis
- 16. Committee on state of molybdenum-99 production and utilization and progress toward eliminating use of highly enriched uranium, nuclear and radiation studies board, division on earth and life studies, national academies of sciences, engineering, and medicine, "Molybdenum-99 for Medical Imaging," Molybdenum-99 for Medical Imaging, National Academies Press, Washington, D.C., 2016.
- IAEA (2017) Cyclotron based production of technetium-99m, Cyclotron based production of technetium-99m, IAEA, Vienna
- Soppera N, Bossant M, Dupont E (2014) JANIS 4: an improved version of the NEA java-based nuclear data information system. Nucl Data Sheets 120:294–296
- Ramadan HE, El-Amir MA, Mostafa M (2025) Nano zirconium hydroxide gel as a sorbent material for ⁹⁹Mo/^{99m}Tc radioisotope generator. J Radioanal Nucl Chem. https://doi.org/10.1007/ s10967-024-09918-4
- Chattopadhyay S, Barua L, De A, Saha Das S, Kuniyil R, Bhaskar P, Pal SS, Kumar Sarkar S, Das MK (2012) A computerized compact module for separation of ^{99m}Tc-radionuclide from molybdenum. Appl Radiat Isot 70:2631–2637
- Chattopadhyay S, Das SS, Das MK, Goomer NC (2008) Recovery
 of ^{99m}Tc from Na₂[⁹⁹Mo]MoO₄ solution obtained from reactorproduced (n,γ)⁹⁹Mo using a tiny Dowex-1 column in tandem with
 a small alumina column. Appl Radiat Isot 66:1814–1817
- Kawabata M, Motoishi S, Saeki H, Hashimoto K, Nagai Y (2017) Recovery efficiency of enriched ¹⁰⁰MoO₃ irradiated by accelerator neutrons. J Phys Soc Jpn 86:053201
- Nagai Y, Kawabata M, Sato N, Hashimoto K, Saeki H, Motoishi S (2014) High thermo-separation efficiency of ^{99m}Tc from molten ¹⁰⁰MoO₃ samples by repeated milking tests. J Phys Soc Jpn 83:083201
- Shabani D, Rangaiah ST, Langer C, Mauerhofer E, Zakalek P, Gutberlet T (2025) Benchmarking of the PHITS simulation code using neutron activation experiments for reliable calculations of neutron fields. J Radioanal Nucl Chem 334:2981–2989

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

