001048141 001__ 1048141
001048141 005__ 20251120202159.0
001048141 0247_ $$2doi$$a10.1016/j.applthermaleng.2025.128994
001048141 0247_ $$2ISSN$$a1359-4311
001048141 0247_ $$2ISSN$$a1873-5606
001048141 037__ $$aFZJ-2025-04521
001048141 082__ $$a690
001048141 1001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b0$$eCorresponding author
001048141 245__ $$a3D-manufactured non-isothermal glass cell for thermophoretic measurements
001048141 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2026
001048141 3367_ $$2DRIVER$$aarticle
001048141 3367_ $$2DataCite$$aOutput Types/Journal article
001048141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763653421_23791
001048141 3367_ $$2BibTeX$$aARTICLE
001048141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048141 3367_ $$00$$2EndNote$$aJournal Article
001048141 520__ $$aThermophoresis, the migration of particles within a thermal gradient, presents opportunities in diverse fields ranging from biotechnology to energy applications. The quantification of this phenomenon, described by the Soret coefficient (S_T), requires precise control over non-isothermal conditions, which is challenging to achieve in conventional microfluidic devices. However, conventional polymer-based cells are limited by a significant temperature drop across the material and susceptibility to the adhesion of colloidal particles. Recently, 3D-manufactured glass cells have been shown to produce a non-isothermal temperature field in a microchannel for inducing a significant temperature gradient due to high thermal conductivity, which enables temperature-dependent analysis of thermophoresis. Herein, we present a 3D-manufactured glass microfluidic cell for measuring the Soret coefficient under controlled temperature gradients. The cell produces a stable and a large temperature gradient across the channel which allows multi-temperature measurements without adjusting hot and cold water temperatures. The measured Soret coefficient by the glass cell across a temperature range of 20 °C to 30 °C shows close agreement with the benchmark measurement data. These results show that the 3D-manufactured glass cell can not only quantify the Soret coefficient but can also function as a solvent-resistant device, suitable for complex biological and chemical solutions.
001048141 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001048141 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048141 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b1$$eCorresponding author
001048141 773__ $$0PERI:(DE-600)2019322-1$$a10.1016/j.applthermaleng.2025.128994$$gVol. 284, p. 128994 -$$p128994$$tApplied thermal engineering$$v284$$x1359-4311$$y2026
001048141 8564_ $$uhttps://juser.fz-juelich.de/record/1048141/files/1-s2.0-S1359431125035860-main.pdf$$yRestricted
001048141 909CO $$ooai:juser.fz-juelich.de:1048141$$pVDB
001048141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b1$$kFZJ
001048141 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001048141 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-06$$wger
001048141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL THERM ENG : 2022$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001048141 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL THERM ENG : 2022$$d2024-12-06
001048141 920__ $$lyes
001048141 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001048141 980__ $$ajournal
001048141 980__ $$aVDB
001048141 980__ $$aI:(DE-Juel1)IBI-4-20200312
001048141 980__ $$aUNRESTRICTED