001     1048141
005     20251120202159.0
024 7 _ |a 10.1016/j.applthermaleng.2025.128994
|2 doi
024 7 _ |a 1359-4311
|2 ISSN
024 7 _ |a 1873-5606
|2 ISSN
037 _ _ |a FZJ-2025-04521
082 _ _ |a 690
100 1 _ |a Lee, Namkyu
|0 P:(DE-Juel1)179367
|b 0
|e Corresponding author
245 _ _ |a 3D-manufactured non-isothermal glass cell for thermophoretic measurements
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763653421_23791
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thermophoresis, the migration of particles within a thermal gradient, presents opportunities in diverse fields ranging from biotechnology to energy applications. The quantification of this phenomenon, described by the Soret coefficient (S_T), requires precise control over non-isothermal conditions, which is challenging to achieve in conventional microfluidic devices. However, conventional polymer-based cells are limited by a significant temperature drop across the material and susceptibility to the adhesion of colloidal particles. Recently, 3D-manufactured glass cells have been shown to produce a non-isothermal temperature field in a microchannel for inducing a significant temperature gradient due to high thermal conductivity, which enables temperature-dependent analysis of thermophoresis. Herein, we present a 3D-manufactured glass microfluidic cell for measuring the Soret coefficient under controlled temperature gradients. The cell produces a stable and a large temperature gradient across the channel which allows multi-temperature measurements without adjusting hot and cold water temperatures. The measured Soret coefficient by the glass cell across a temperature range of 20 °C to 30 °C shows close agreement with the benchmark measurement data. These results show that the 3D-manufactured glass cell can not only quantify the Soret coefficient but can also function as a solvent-resistant device, suitable for complex biological and chemical solutions.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 1
|e Corresponding author
773 _ _ |a 10.1016/j.applthermaleng.2025.128994
|g Vol. 284, p. 128994 -
|0 PERI:(DE-600)2019322-1
|p 128994
|t Applied thermal engineering
|v 284
|y 2026
|x 1359-4311
856 4 _ |u https://juser.fz-juelich.de/record/1048141/files/1-s2.0-S1359431125035860-main.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1048141
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-06
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL THERM ENG : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL THERM ENG : 2022
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21