001     1048142
005     20251117202148.0
024 7 _ |a 10.1103/f4wj-12gt
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04522
|2 datacite_doi
037 _ _ |a FZJ-2025-04522
082 _ _ |a 530
100 1 _ |a Şaşıoğlu, E.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Itinerant versus localized magnetism in spin-gapped metallic half-Heusler compounds: Stoner criterion and magnetic interactions
260 _ _ |a Woodbury, NY
|c 2025
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763376209_4882
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spin-gapped metals have recently emerged as promising candidates for spintronic and nanoelectronic applications, enabling functionalities such as sub-60 mV/dec switching, negative differential resistance, and nonlocal spin-valve effects in field-effect transistors. Realizing these functionalities, however, requires a deeper understanding of their magnetic behavior, which is governed by a subtle interplay between localized and itinerant magnetism. This interplay is particularly complex in spin-gapped metallic half-Heusler compounds, whose magnetic properties remain largely unexplored despite previous studies of their electronic structure. In this work, we systematically investigate the magnetic behavior of spin-gapped metallic half-Heusler compounds 𝑋⁢𝑌⁢𝑍 (𝑋= Fe, Co, Ni, Rh, Ir, Pd, Pt; 𝑌= Ti, V, Zr, Hf, Nb, Ta; 𝑍= In, Sn, Sb), revealing clear trends. Co- and Ni-based compounds predominantly exhibit itinerant magnetism, whereas Ti-, V-, and Fe-based systems may host localized moments, itinerant moments, or a coexistence of both. To uncover the origin of magnetism, we apply the Stoner model, with the Stoner parameter 𝐼 estimated from Coulomb interaction parameters (Hubbard 𝑈and Hund's exchange 𝐽) computed using the constrained random phase approximation (cRPA). Our analysis shows that compounds not satisfying the Stoner criterion tend to remain nonmagnetic. On the contrary, compounds that satisfy the Stoner criterion, generally exhibit magnetic ordering. highlighting the crucial role of electronic correlations and band structure effects in the emergence of magnetism. For compounds with magnetic ground states, we compute Heisenberg exchange parameters, estimate Curie temperatures (𝑇C), and analyze spin-wave properties, including magnon dispersions and stiffness constants. These results provide microscopic insight into the magnetism of spin-gapped metallic half-Heuslers and establish a predictive framework for designing spintronic materials with tailored magnetic properties.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)397917626 - Spin-abhängiger Transport in inhomogenen Systemen (B04+) (397917626)
|0 G:(GEPRIS)397917626
|c 397917626
|x 1
536 _ _ |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)
|0 G:(GEPRIS)319898210
|c 319898210
|x 2
536 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)
|0 G:(BMBF)01DH16027
|c 01DH16027
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Beida, Wejdan
|0 P:(DE-Juel1)190302
|b 1
|u fzj
700 1 _ |a Ghosh, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tas, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sanyal, B.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lounis, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 6
|u fzj
700 1 _ |a Mertig, I.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Galanakis, I.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1103/f4wj-12gt
|g Vol. 112, no. 18, p. 184420
|0 PERI:(DE-600)2844160-6
|n 18
|p 184420
|t Physical review / B
|v 112
|y 2025
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1048142/files/2506.03416v1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1048142/files/f4wj-12gt.pdf
909 C O |o oai:juser.fz-juelich.de:1048142
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190302
910 1 _ |a Physics Department, RWTH Aachen University, 52062, Aachen, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)190302
910 1 _ |a Department of Physics, Central University of Kashmir, Tulmulla, Ganderbal, Jammu and Kashmir, 191131, India
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, Gebze Technical University, 41400 Kocaeli, Turkey
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Physics Department, RWTH Aachen University, 52062, Aachen, Germany
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21