MINDset: A FAIR Infrastructure for Multimodal Neuroimaging Data

Ravichandran Rajkumar^{1,2+}, Syed Muhammad Ali^{1,2}, Markus Zimmermann^{1,*}, N Jon Shah¹, Irene Neuner^{1,2}

¹Institute of Neuroscience and Medicine 4 (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany

²Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH Aachen University, Aachen, Germany

*Current Affiliation: Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany

+ Email: r.rajkumar@fz-juelich.de

MINDset

- Research platform for centralized management, integration, and visualization of multimodal neuroimaging datasets
- Unifies heterogeneous data sources (MRI, PET, EEG, fNIRS, omics, cognitive & clinical assessments) into a standardized ecosystem
- Incorporates robust *metadata structuring* to ensure interoperability
- Supports FAIR data principles across the research data lifecycle
- Scalable infrastructure using secure *cloud/Kubernetes* architecture for high-volume datasets
- Optimized for *Al/ML workflows*, including multimodal foundation models, RAG, and automated preprocessing
- Provides *user-friendly querying, filtering, and visualization tools* for interactive data exploration

Architecture

- Modular, cloud-native architecture designed for scalability,
 reliability, and secure multimodal data access
- Streamlit-based web interface enabling intuitive exploration of studies, metadata, multimodal visualizations, and dataset retrieval
- FastAPI backend managing API requests for study queries, metadata extraction, and generation of interactive visual analytics
- MongoDB database layer storing structured metadata (JSON/odML)
 and supporting flexible, high-performance search across modalities
- Containerized components (web app, backend, database) deployed on FZ Jülich JuCloud
- Kubernetes orchestration for automated scaling, load balancing, and continuous availability of application services
- OAuth2 Proxy integration, securing user authentication and controlled access to sensitive neuroimaging data
- GitLab CI/CD pipelines automate building, testing, and deployment of application containers, ensuring reproducibility and rapid updates

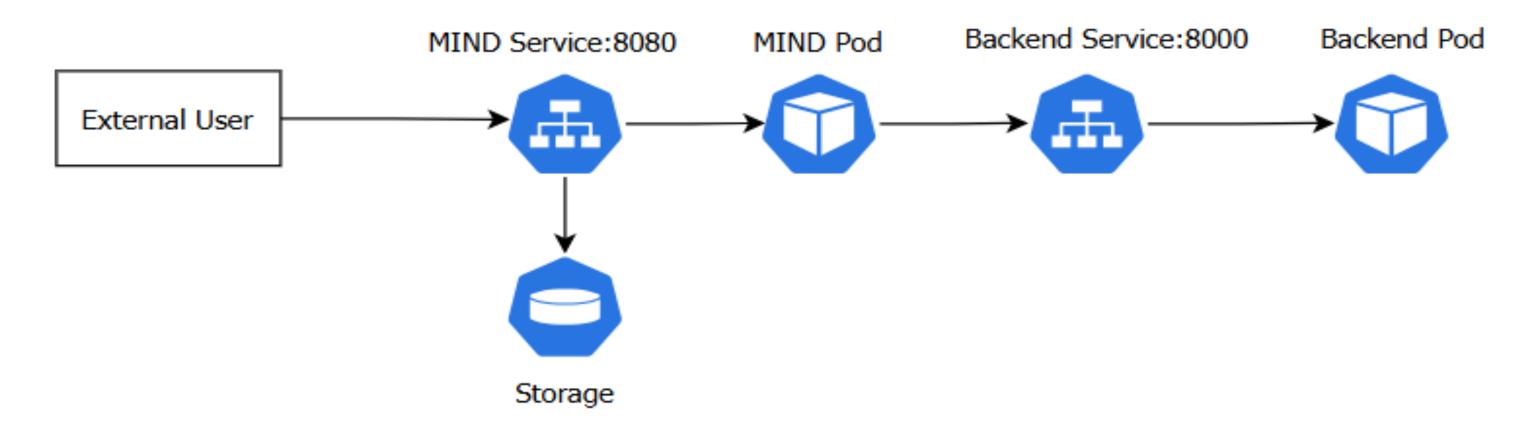


Fig. 1: Shows the workflow diagram for the underlying Kubernetes architecture in the MIND application.

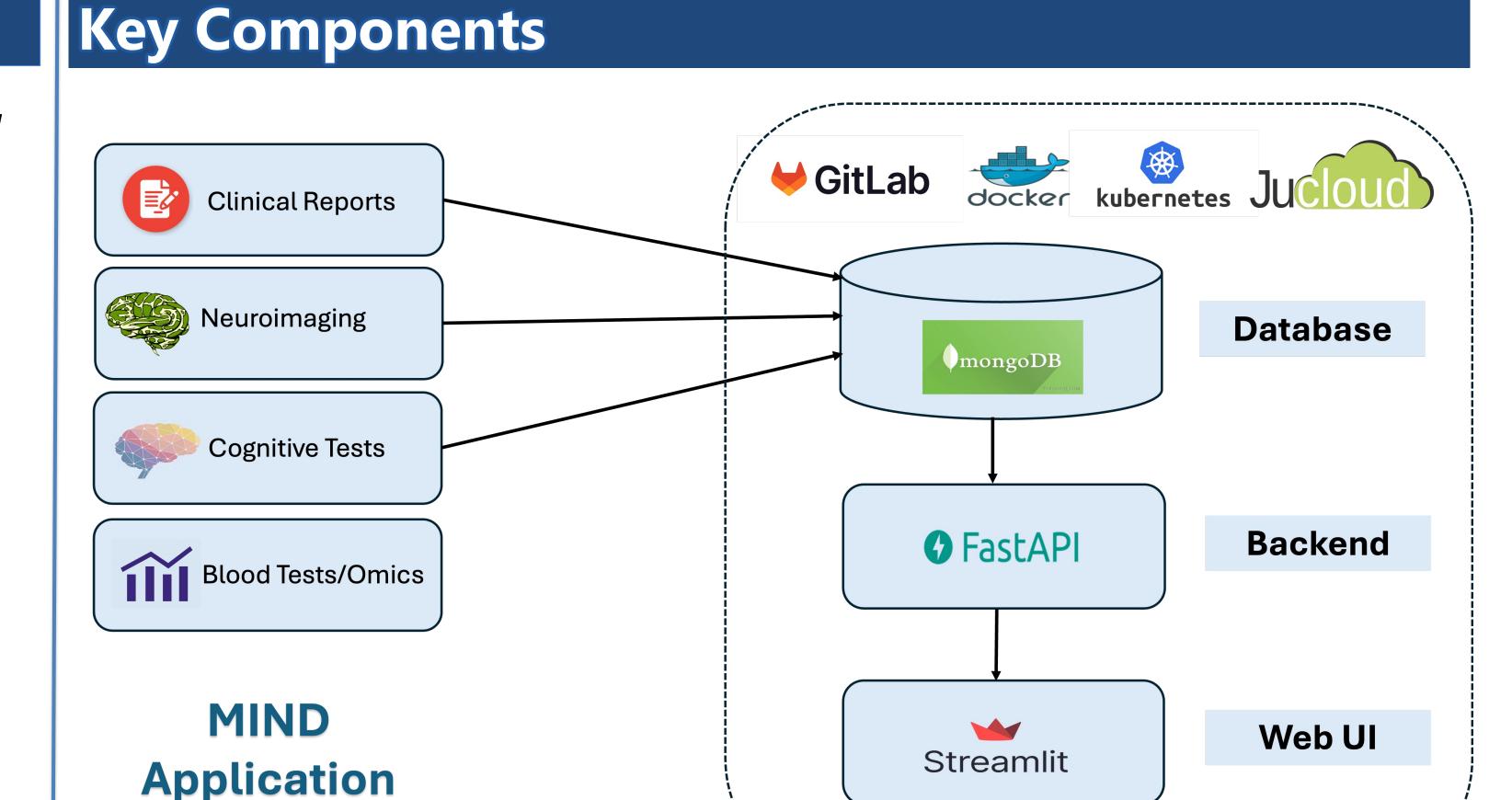


Fig. 2: A schematic diagram showing the main components involved in the MIND application. © Syed Muhammed Ali & Ravichandran Rajkumar all rights reserved.

Key Features

Overview

- **Study explorer** to Browse/filter study metadata and select attributes for instant visualization
- NIfTI Image viewer to load NIfTI images with overlays
- Interactive visualization to plot metadata/cognitive//imaging scores
- LLM-based patient report generator from multimodal data*
- rTMS hotspot indicator for precision treatment targeting*
- Study dashboards summarizing data completeness & metrics*
- Data quality reporter for automated QC checks*
- Integrate automated data analysis pipelines*
- Stats explorer for rapid descriptive statistics*
- *Features under development

Outlook

- Open MINDset to additional groups and imaging facilities
- Integrate more modalities (omics, electrophysiology, behavioural data)
 into the BIDS/FAIR framework
- Add automated multimodal preprocessing and harmonization pipelines
- Expand Al stack: foundation-model adapters, RAG search, explainability tools
- Build Al-ready data layers (vector search, embeddings...)
- Collaborate with RSE and NFDI partners to develop sustainable tools, harmonized metadata standards, and interoperable FAIR workflows.
- Grow MINDset into a scalable, secure hub for multi-centre precision psychiatry with additional funding.

Acknowledgements

This project was partly funded by the STEF Infrastructures Initiative and the Research Data Management Initiative of Forschungszentrum Jülich, awarded to Dr. Ravichandran Rajkumar. This poster is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). Figures are excluded from this license; all rights to them are reserved by Syed Muhammed Ali & Ravichandran Rajkumar, as they will be used for master's thesis.