001048160 001__ 1048160
001048160 005__ 20251117202148.0
001048160 0247_ $$2doi$$a10.48550/ARXIV.2511.01870
001048160 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04528
001048160 037__ $$aFZJ-2025-04528
001048160 1001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b0$$eCorresponding author$$ufzj
001048160 245__ $$aCytoNet: A Foundation Model for the Human Cerebral Cortex
001048160 260__ $$barXiv$$c2025
001048160 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1763385212_4679
001048160 3367_ $$2ORCID$$aWORKING_PAPER
001048160 3367_ $$028$$2EndNote$$aElectronic Article
001048160 3367_ $$2DRIVER$$apreprint
001048160 3367_ $$2BibTeX$$aARTICLE
001048160 3367_ $$2DataCite$$aOutput Types/Working Paper
001048160 520__ $$aTo study how the human brain works, we need to explore the organization of the cerebral cortex and its detailed cellular architecture. We introduce CytoNet, a foundation model that encodes high-resolution microscopic image patches of the cerebral cortex into highly expressive feature representations, enabling comprehensive brain analyses. CytoNet employs self-supervised learning using spatial proximity as a powerful training signal, without requiring manual labelling. The resulting features are anatomically sound and biologically relevant. They encode general aspects of cortical architecture and unique brain-specific traits. We demonstrate top-tier performance in tasks such as cortical area classification, cortical layer segmentation, cell morphology estimation, and unsupervised brain region mapping. As a foundation model, CytoNet offers a consistent framework for studying cortical microarchitecture, supporting analyses of its relationship with other structural and functional brain features, and paving the way for diverse neuroscientific investigations.
001048160 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048160 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x1
001048160 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
001048160 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x3
001048160 536__ $$0G:(DE-HGF)ZT-I-PF-4-061$$aX-BRAIN (ZT-I-PF-4-061)$$cZT-I-PF-4-061$$x4
001048160 536__ $$0G:(GEPRIS)501864659$$aDFG project G:(GEPRIS)501864659 - NFDI4BIOIMAGE - Nationale Forschungsdateninfrastruktur für Mikroskopie und Bildanalyse (501864659)$$c501864659$$x5
001048160 588__ $$aDataset connected to DataCite
001048160 650_7 $$2Other$$aNeurons and Cognition (q-bio.NC)
001048160 650_7 $$2Other$$aArtificial Intelligence (cs.AI)
001048160 650_7 $$2Other$$aMachine Learning (cs.LG)
001048160 650_7 $$2Other$$aFOS: Biological sciences
001048160 650_7 $$2Other$$aFOS: Computer and information sciences
001048160 650_7 $$2Other$$aI.2.6; I.2.10; I.4.7; I.5.1; I.5.4
001048160 7001_ $$0P:(DE-Juel1)198947$$aBoztoprak, Zeynep$$b1$$ufzj
001048160 7001_ $$0P:(DE-Juel1)171152$$aKropp, Jan-Oliver$$b2$$ufzj
001048160 7001_ $$0P:(DE-Juel1)171151$$aThönnißen, Julia$$b3$$ufzj
001048160 7001_ $$0P:(DE-HGF)0$$aBerr, Katia$$b4
001048160 7001_ $$0P:(DE-Juel1)167110$$aSpitzer, Hannah$$b5
001048160 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b6$$ufzj
001048160 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b7$$ufzj
001048160 773__ $$a10.48550/ARXIV.2511.01870
001048160 8564_ $$uhttps://juser.fz-juelich.de/record/1048160/files/2511.01870v1.pdf$$yOpenAccess
001048160 909CO $$ooai:juser.fz-juelich.de:1048160$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001048160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b0$$kFZJ
001048160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198947$$aForschungszentrum Jülich$$b1$$kFZJ
001048160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171152$$aForschungszentrum Jülich$$b2$$kFZJ
001048160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171151$$aForschungszentrum Jülich$$b3$$kFZJ
001048160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b6$$kFZJ
001048160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b7$$kFZJ
001048160 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048160 9141_ $$y2025
001048160 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048160 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001048160 980__ $$apreprint
001048160 980__ $$aVDB
001048160 980__ $$aUNRESTRICTED
001048160 980__ $$aI:(DE-Juel1)INM-1-20090406
001048160 9801_ $$aFullTexts