001     1048160
005     20251117202148.0
024 7 _ |a 10.48550/ARXIV.2511.01870
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04528
|2 datacite_doi
037 _ _ |a FZJ-2025-04528
100 1 _ |a Schiffer, Christian
|0 P:(DE-Juel1)170068
|b 0
|e Corresponding author
|u fzj
245 _ _ |a CytoNet: A Foundation Model for the Human Cerebral Cortex
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1763385212_4679
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a To study how the human brain works, we need to explore the organization of the cerebral cortex and its detailed cellular architecture. We introduce CytoNet, a foundation model that encodes high-resolution microscopic image patches of the cerebral cortex into highly expressive feature representations, enabling comprehensive brain analyses. CytoNet employs self-supervised learning using spatial proximity as a powerful training signal, without requiring manual labelling. The resulting features are anatomically sound and biologically relevant. They encode general aspects of cortical architecture and unique brain-specific traits. We demonstrate top-tier performance in tasks such as cortical area classification, cortical layer segmentation, cell morphology estimation, and unsupervised brain region mapping. As a foundation model, CytoNet offers a consistent framework for studying cortical microarchitecture, supporting analyses of its relationship with other structural and functional brain features, and paving the way for diverse neuroscientific investigations.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 1
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 2
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 3
536 _ _ |a X-BRAIN (ZT-I-PF-4-061)
|0 G:(DE-HGF)ZT-I-PF-4-061
|c ZT-I-PF-4-061
|x 4
536 _ _ |a DFG project G:(GEPRIS)501864659 - NFDI4BIOIMAGE - Nationale Forschungsdateninfrastruktur für Mikroskopie und Bildanalyse (501864659)
|0 G:(GEPRIS)501864659
|c 501864659
|x 5
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neurons and Cognition (q-bio.NC)
|2 Other
650 _ 7 |a Artificial Intelligence (cs.AI)
|2 Other
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a FOS: Biological sciences
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
650 _ 7 |a I.2.6; I.2.10; I.4.7; I.5.1; I.5.4
|2 Other
700 1 _ |a Boztoprak, Zeynep
|0 P:(DE-Juel1)198947
|b 1
|u fzj
700 1 _ |a Kropp, Jan-Oliver
|0 P:(DE-Juel1)171152
|b 2
|u fzj
700 1 _ |a Thönnißen, Julia
|0 P:(DE-Juel1)171151
|b 3
|u fzj
700 1 _ |a Berr, Katia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Spitzer, Hannah
|0 P:(DE-Juel1)167110
|b 5
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 6
|u fzj
700 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 7
|u fzj
773 _ _ |a 10.48550/ARXIV.2511.01870
856 4 _ |u https://juser.fz-juelich.de/record/1048160/files/2511.01870v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048160
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)198947
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171151
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)165746
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21