| Hauptseite > Publikationsdatenbank > CytoNet: A Foundation Model for the Human Cerebral Cortex > print |
| 001 | 1048160 | ||
| 005 | 20251117202148.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2511.01870 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04528 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04528 |
| 100 | 1 | _ | |a Schiffer, Christian |0 P:(DE-Juel1)170068 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a CytoNet: A Foundation Model for the Human Cerebral Cortex |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1763385212_4679 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 520 | _ | _ | |a To study how the human brain works, we need to explore the organization of the cerebral cortex and its detailed cellular architecture. We introduce CytoNet, a foundation model that encodes high-resolution microscopic image patches of the cerebral cortex into highly expressive feature representations, enabling comprehensive brain analyses. CytoNet employs self-supervised learning using spatial proximity as a powerful training signal, without requiring manual labelling. The resulting features are anatomically sound and biologically relevant. They encode general aspects of cortical architecture and unique brain-specific traits. We demonstrate top-tier performance in tasks such as cortical area classification, cortical layer segmentation, cell morphology estimation, and unsupervised brain region mapping. As a foundation model, CytoNet offers a consistent framework for studying cortical microarchitecture, supporting analyses of its relationship with other structural and functional brain features, and paving the way for diverse neuroscientific investigations. |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319) |0 G:(EU-Grant)101147319 |c 101147319 |f HORIZON-INFRA-2022-SERV-B-01 |x 1 |
| 536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 2 |
| 536 | _ | _ | |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) |0 G:(DE-HGF)InterLabs-0015 |c InterLabs-0015 |x 3 |
| 536 | _ | _ | |a X-BRAIN (ZT-I-PF-4-061) |0 G:(DE-HGF)ZT-I-PF-4-061 |c ZT-I-PF-4-061 |x 4 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)501864659 - NFDI4BIOIMAGE - Nationale Forschungsdateninfrastruktur für Mikroskopie und Bildanalyse (501864659) |0 G:(GEPRIS)501864659 |c 501864659 |x 5 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Neurons and Cognition (q-bio.NC) |2 Other |
| 650 | _ | 7 | |a Artificial Intelligence (cs.AI) |2 Other |
| 650 | _ | 7 | |a Machine Learning (cs.LG) |2 Other |
| 650 | _ | 7 | |a FOS: Biological sciences |2 Other |
| 650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
| 650 | _ | 7 | |a I.2.6; I.2.10; I.4.7; I.5.1; I.5.4 |2 Other |
| 700 | 1 | _ | |a Boztoprak, Zeynep |0 P:(DE-Juel1)198947 |b 1 |u fzj |
| 700 | 1 | _ | |a Kropp, Jan-Oliver |0 P:(DE-Juel1)171152 |b 2 |u fzj |
| 700 | 1 | _ | |a Thönnißen, Julia |0 P:(DE-Juel1)171151 |b 3 |u fzj |
| 700 | 1 | _ | |a Berr, Katia |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Spitzer, Hannah |0 P:(DE-Juel1)167110 |b 5 |
| 700 | 1 | _ | |a Amunts, Katrin |0 P:(DE-Juel1)131631 |b 6 |u fzj |
| 700 | 1 | _ | |a Dickscheid, Timo |0 P:(DE-Juel1)165746 |b 7 |u fzj |
| 773 | _ | _ | |a 10.48550/ARXIV.2511.01870 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1048160/files/2511.01870v1.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1048160 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)170068 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)198947 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171152 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171151 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131631 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)165746 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|