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ABSTRACT

The interaction of a suspension of rotating colloids with a periodically patterned structure is here investigated by means of continuum
theoretical predictions and hydrodynamic simulations. Close to the obstacle surface, rotors circulate in the direction opposite to their
inherent direction of rotation essentially since they are being carried by each other’s flows. This is in agreement with a prediction of the
generalized Stokes equation and related to the unidirectional rotational stresses. The resulting stationary background flow significantly affects
the system dynamics and coexists with the intrinsic active turbulent behavior. The relative importance of either the background flow or the
active turbulence can be controlled with the rotor density and the obstacle size. The system is either dominated by stationary vortices pinned
to the obstacles or vivid active turbulent dynamics. While momentum dissipation into an underlying frictional substrate damps the related
flows, small values of the friction can enhance the vortex flow around an obstacle. The colloids’ diffusive dynamics are governed by odd
diffusive fluxes guiding the colloids around the excluded volume introduced by obstacles, such that enhanced effective diffusive transport is
obtained at finite obstruction. Our results pave the way to systematically address how confinement can be employed to control or harness the
dynamics of colloidal chiral active turbulence and how the interplay of emerging edge currents and active turbulent dynamics at varying
densities can be systematically determined.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0297654

I. INTRODUCTION

Chiral active fluids consist of actively rotating building blocks,
which can be externally actuated rotating colloids,1 or intrinsically
active rotational swimmers.2,3 The so-called circle swimmers are a
prominent example characterized by the average individual circular
trajectories,4–6 although most other isolated rotors do not necessarily
display such circular trajectories. Colloidal chiral active suspensions
contain rotating elements causing a rotation of the surrounding sol-
vent, which induces the rotation of neighboring particles. The particles’
trajectories are then determined by the symmetry breaking of the local
rotational friction leading to an unbalanced mutual rotational drive
and the formation of multiscale vortices.7 Collective dynamics of such
chiral active systems crucially depend on the rotor density, resulting
in a Brownian low-density limit, active turbulence at intermediate

densities, and a slowdown of the dynamics induced by an increase in
the effective solvent viscosity at very high colloidal densities.7 At larger
scales, rotors can be realized as dry gears without any surrounding sol-
vent, where the direct rotational contact friction causes a similar
phenomenology.8

Geometries where confinement or interactions with obstacles
are significant are typically associated with hindrance of free diffusion
and caging resulting from the obstruction within the complex
geometries.9–12 In active matter systems, the interaction of the active
units with the solid walls can lead to rich effects such as locally pinned
or directed dynamics, the emergence of stationary vortex patterns, clog-
ging, or even dynamics that exhibit commensuration or frustration
with the obstacle lattice.13–21 Boundaries and interfaces in chiral active
fluids are known to excite edge fluxes,22–24 leading to robust particle
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transport along the edges. The introduction of boundaries into odd dif-
fusive systems leads to diffusive fluxes that manifest as a rolling effect
along the boundary.25 In contact with an array of obstacles, circle
swimmers exhibit either enhanced or diminished transport controlled
by the obstacle density and noise.26 The enhancement can be explained
by the fact that collisions between the active particles and the obstacles
interrupt the swimmers’ limited circular trajectories, thus giving rise to
trajectories with an enhanced effective diffusive behavior.27 This raises
the question of whether boundaries can be used in chiral active matter
systems in order to modify or even harness spontaneous flows.

In this article, we show that chiral active fluids consisting of a col-
loidal suspension of rotors in patterned environments, such as regular
obstacle lattices, lead to a rich phenomenology such as tamed active tur-
bulence, pinning of vortices around the obstacles, and enhanced odd
diffusive transport. We derive the explicit solution of the Stokes flow
featuring chiral activity22 around an isolated obstacle with hydrody-
namic coupling between the no-slip obstacle and colloid surfaces. The
predictions are tested with results obtained using massively parallel
GPU-accelerated explicit solvent multiparticle collision dynamics simu-
lations of suspended colloidal rotors following an explicit experimental
protocol.7,28 Unbalanced rotational stresses lead to the formation of an
edge current along the surfaces of the obstacles, which increases with
increasing rotor density and obstacle diameter. As a consequence of the
viscous fluid forces, the edge current leads to the formation of a station-
ary background flow that coexists with the inherent active turbulent
dynamics. The obstacles diminish the active turbulent dynamics to an
extent that can be tuned by the rotor density, the obstacle size and sepa-
ration, and also the friction of the substrate. Additionally, it is shown
how the obstacles can be used to facilitate effective diffusive transport
by guiding the rotors around the obstacles with odd diffusive fluxes.

II. MODEL

We simulate a two-dimensional chiral active fluid composed of
rotating colloids suspended in a solvent in a periodically patterned
environment. For the solvent, we employ an angular momentum con-
serving variant of the well-established mesoscopic hydrodynamic sim-
ulation method multiparticle collision dynamics (MPC).29 Therein, the
solvent consists of point-like fluid particles of mass m whose positions
ri and velocities vi are updated at discrete time steps of time difference
h according to the following two-step protocol. First, fluid particles
move ballistically according to riðt þ hÞ ¼ riðtÞ þ viðtÞh. Then, the
particles are sorted into square collision boxes of length a, and the fluid
particles within a respective box exchange momentum according to
the following rule. The relative velocity of each fluid particle with
respect to the mean velocity in the respective box is rotated by 6a at
equal probability. The final velocity of the fluid particle i in the colli-
sion box f after the collision at time t þ h then is composed of the
average velocity in the collision box vfðtÞ, plus the rotated relative
velocity, which yields viðt þ hÞ ¼ vfðtÞ þ RðaÞ � ðvi � vfðtÞÞ, where
RðaÞ is a two-dimensional rotation matrix. This protocol preserves lin-
ear momentum and energy. However, in order to prevent the emer-
gence of unphysical torques,30 we add a correction term, which
additionally enforces angular momentum conservation.7,31,32 Since we
study an active matter system with constant energy input, we apply a
thermostat to ensure an average constant system temperature kBT . We
use the Maxwell–Boltzmann thermostat, which ensures correct veloc-
ity rescaling on the level of the collision box.33 We consider m ¼ 1,
kBT ¼ 1, and a ¼ 1 as simulation units. We employ a ¼ p=2, a

collision time of h ¼ 0:02a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðkBTÞ

p
and an average number of

fluid particles per collision box of q ¼ 10m=a2. This choice of MPC
parameters results in a solvent viscosity of g ¼ 17:9

ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=a, as

accurately predicted using kinematic theory,31 and a Schmidt number
Sc ¼ g=ðqDsÞ ¼ 147, with Ds the solvent diffusion coefficient. This
large value of Sc provides a clear fluid behavior.

Colloids suspended in the solvent are modeled as movable no-
slip boundaries that exchange linear and angular momentum with the
fluid particles during streaming and collision steps by applying the
bounce-back rule and including virtual fluid particles within the col-
loid in the collision step to optimize the no-slip behavior.34 Colloids
interact via a shifted repulsive WCA interaction corresponding to the
potential

UðrÞ ¼ 4e
a

r� r

� �12

� a
r� r

� �6
" #

þ e ; for r � rþ 21=6a

0 else;

8>><
>>: (1)

with e ¼ kBT , such that it is short-ranged and there is at least one colli-
sion cell in between the rotors in order to guarantee proper hydrody-
namic coupling. The variables of the colloidal degrees of freedom
are updated using a velocity-Verlet molecular dynamics scheme.35 The
colloids’ rotational activity is implemented by ensuring a constant
angular velocity on each of the colloids’ surfaces and thus closely resem-
bling experimental colloidal behavior for rotational frequencies and
magnetic field strengths where the colloids’magnetic moment precisely
follows the rotation of the externally applied rotating magnetic field.7

As a result, a rotational flow field around each rotor is induced. We
employ a fixed angular velocity of X ¼ 0:01=ða ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=ðkBTÞ
p Þ, value

which is chosen to match a related experimental system to which our
simulations have been previously compared to.7 Considering the fluid
flow created at the surface of a colloid, this results in Reynolds and
P�eclet numbers of Re ¼ r2X=ð4�Þ ’ 0:09 and Pe¼ r2X=ð4D0Þ’ 20,
respectively, where D0 is the diffusion coefficient of isolated rotors, and
thus appropriately reproduces experimental low-Reynolds number
conditions.7

We study the hydrodynamic chiral active fluid at area density
/ ¼ Npðr=2Þ2=ðL2 � pðD=2Þ2Þ, where N is the number of rotors per
unit cell, in a square periodic array of obstacles, which we model by
implementing non-movable no-slip walls. The rotor diameter is r ¼ 6a
and the diameter of the obstacle D varies between 5r and 160r signifi-
cantly exceeding the size of the rotors. The rotors interact with walls in a
similar fashion as in Eq. (1), i.e., a 12-6 shifted WCA potential ensures
that the minimal distance between the surface of the rotors and the wall
is at least one collision box. Despite the fact that we are only analyzing
the rotor degrees of freedom here, the main computational effort is
expended for the dynamics of the solvent particles. We have developed a
highly parallelized GPU-based simulation code running on high-end
GPU supercomputers36 in order to be able to simulate the low-Reynolds
number dynamics of up to 105 colloids and 107 fluid particles.

III. RESULTS
A. Superposition of active turbulent and directed
dynamics

A patterned environment is created by placing fixed circular
obstacles in a two-dimensional periodic square lattice. The confinement
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exerted by the lattice can be characterized by the ratio between the
obstacle diameter D and the distance between obstacle centers L, this is
K � D=L. With this definition, the limit K ! 0 corresponds to a bulk
system with no obstacles, while K ! 1 corresponds to a system with
obstacles in contact and completely separated domains in-between each
four obstacles. We refer therefore to K as the lattice confinement
parameter. In the unconfined limit K ! 0, the bulk dynamics is recov-
ered, where the simultaneous emergence of active turbulence and odd
dynamics has been described.7 Each rotor induces the rotation of the
solvent together with its surface, such that all neighboring rotors get a
propulsion thrust, making them rotate not only around their axes but
also around each other [see Fig. 1(a)]. In the presence of a large number
of rotors, this leads to the emergence of eddies of different sizes,
together with an accumulation of the rotors in areas rotating in the
same direction as the rotors and a depletion in counter-rotating areas.

With increasing K, this is with increasing size of the obstacles, the
instantaneous dynamics alters in two main manners. On the one hand,
due to the obstacles’ excluded volume, the formation of vortices is hin-
dered by the excluded volume defined by the obstacles, leading to a
decreasing vortex size. On the other hand, the rotors tend to move
along the obstacles’ surface, such that an effective edge flow around the
obstacles emerges. Both effects become more important with increas-
ing obstacle size. An increasing rotor density also enhances the effect
because the mutual steric hindrance of the rotors crucially limits their
free translation and thus the formation of vortices. Simulations with
nine obstacles and periodic boundary conditions are performed for
systems with rotors density / ¼ 0:32 and various values of K. Short-
time rotor trajectories in Figs. 1(b) and 1(d) (Multimedia view) show

the instantaneous formation of unordered vortices of various sizes,
and it can be observed that the maximum vortex size decreases with
increasing obstacle size. The appearance of flow along the obstacles’
surface is also more significant the larger the obstacles are.

The flow induced along the edges becomes more obvious when
the rotor’s velocity is averaged over large time intervals. The velocity
field and corresponding streamlines are shown in Fig. 2, where, in
order to increase efficiency, simulations with one single unit cell are
used. Close to the obstacle’s surface, the flow rotating around the
obstacles in the opposite direction to the colloids’ rotation becomes
obvious. For increasing distance, the flow decays and thermal fluctua-
tions become more apparent. The created flows at the edges of the unit
cell vanish due to continuity and the periodicity of the system, giving
rise to a star-shaped orbital counter-rotating flow field within the
area between four obstacles. For smaller values of K, the directed flow
is weak and fluctuations dominate, as in Fig. 2(a); for larger K in
Fig. 2(b), the combination of edge flow and counter-rotating areas
becomes more obvious, and for the largest confinement case K ! 1 in
Fig. 2(c), the flow essentially reduces to a single vortex in between the
obstacles.

B. Edge flow quantification

An analytical estimation of the edge flow can be performed by
considering the colloidal chiral active fluid as a two-dimensional con-
tinuum under the influence of viscous and active stresses together with
internal pressure. The coarse-grained flow dynamics vðrÞ of N rotors
with angular velocity Xi at position ri, and a corresponding local

FIG. 1. Constrained active turbulent eddy formation in the patterned environment. (a) Two rotors (gray) with the co-rotational flows (arrows) of the surrounding MPC solvent
(small blue points). These flows induce hydrodynamic transverse interactions between rotors, which result in mutual advection of the rotors in bulk (trajectories), edge flow along
the obstacles’ walls and odd diffusivity. (b)–(d) Simulation snapshots and superimposed rotor trajectories for various lattice confinement parameters K ¼ D=L, with varying
obstacle sizes D, fixed separation between obstacles centers L ¼ 35r, and fixed rotors size r, at a rotor density / ¼ 0:32. The zoom-in view shows individual rotors’ dynam-
ics in the edge flow. The trajectories are of duration tX=ð2pÞ ¼ 3, i.e., the rotors perform three individual rotations during the trajectory. Multimedia available online.
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angular velocity density ~X ¼ hPi Xidðr � riÞi can then be described
by the generalized incompressible Stokes equation,22

� 1
q
rpeff þ g

q
r2vþ gR

q
êz �rð2~X � xÞ ¼ 0: (2)

Here, q is the constant fluid density, and consequently the angular
velocity density can be assumed to be constant ~X / Xq. Furthermore,
peff � p� goddx is an effective pressure that balances the bulk influen-
ces of odd viscosity and ensures incompressibility together with the
continuity equation r � v ¼ 0 and the vorticity is defined as
x ¼ êz � ðr� vÞ. The term proportional to the shear viscosity g is
the usual Laplacian shear, while the term proportional to the rotational
viscosity gR acts as a synchronization of the individual colloid’s rota-
tion and the rotor fluid vorticity and thus couples the inherent rotation
of the rotors to the translational degrees of freedom.

The flow around a single isolated obstacle is first considered. The
steady-state solution for the rotors flow field in the azimuthal direction
is enough to describe the relevant system dynamics given the rotational
symmetry, this is vuðrÞ with r the distance to the obstacle center, a sce-
nario which is geometrically related to the flow within a circular
container.37 The pressure cancels out of the equation in the azimuthal
direction, such that Eq. (2) reads in polar coordinates (r, u)

0 ¼ ðgþ gRÞ @2
r vu þ 1

r
@rvu � vu

r2

� �
: (3)

The solution takes the form vuðrÞ ¼ c1r þ c2=r, where the constants
c1 and c2 are to be determined using the boundary conditions. For an
isolated obstacle, we assume vuðr ! 1Þ ¼ 0, thus fixing c1 ¼ 0. The
boundary condition at the obstacle surface is a little more subtle,
because the colloidal rotors do not experience stress directly through
the boundary but by the viscous coupling to the solvent, which is sub-
ject to a no-slip boundary condition on the surface of the obstacle and
the rotors. To overcome this problem, we consider a first layer of
rotors evenly distributed with density q at an effective distance d and
with a persistent rotation due to the emerging edge current. The vis-
cous stress between the obstacle and the first rotor layer can be approx-
imated by the viscous stress between two coaxial cylinders with a
narrow gap d in between. For small d values, this stress has been calcu-
lated as38 Rd ¼ gvuðD=2Þ=d, and here we take d ¼ r=2þ 21=6a, with

a the minimum allowed distance between the rotor and obstacle sur-
face. The internal stress tensor of the chiral active fluid consists of
shear38 and rotational stresses39

Rur ¼ g @rvu � vu
r

� �
þ gR

vu
r
þ @rvu � 2~X

� �
: (4)

Inserting the solution vu ¼ c2=r into Rrujr¼D=2 ¼ Rd enables us to
find the solution of the flow around an isolated obstacle,

vuðrÞ ¼ � gR
g

~XD2

D=dþ 4
1
r
: (5)

This solution agrees with the observed collective circulation of the
rotor fluid opposite to the intrinsic individual rotors’ rotation in Fig. 2.
The dominant contribution to collective rotations in rotor fluids stems
from the breaking of symmetry and thus the unidirectional rotational
stress experienced by the rotor layers at the obstacle boundary as illus-
trated in Fig. 3(a). The edge flow is thus created by the inter-rotor rota-
tional stresses, i.e., the second term in Eq. (4), where the interaction
with the obstacle wall is not taken into account. Furthermore, vu is
directly proportional to ~X (and thus also proportional to the rotor
density) and gR resulting from the internal driving of the rotors and
the ability of the solvent to couple the rotors’ internal rotation to the
circulation of the rotor fluid around the obstacle.

Velocity profiles for the rotor’s fluid are shown in Fig. 3(b) for
simulations in a periodic domain at different rotor densities with vu
averaged over the whole range of azimuthal angles. The data collapse
obtained with the normalization of the profiles with ~X, emphasizes the
direct proportionality of vu with bothX and q, as predicted by Eq. (5).
For small values of r=r, this is, close to the obstacle boundary an oscil-
latory velocity profile appears which has been previously reported in
chiral active systems.37 These oscillations quickly decay with distance
from the wall, showing the fluid on average can be accurately described
by a fluid of constant density as in Eq. (5). Also close to the obstacle
boundary, simulations with very low densities do not exactly collapse
with the others since the number of colloids is low and the rotor fluid
density can barely be approximated as constant. On the other hand,
far from the obstacle surface, the flow decays faster than predicted by
Eq. (5). This is due to the superposition of the flow velocities of the
neighboring obstacles, which have opposite directions and ensure that,

FIG. 2. Rotor streamlines for simulations with one single unit cell and different confinements: (a) K ¼ 0:24, (b) K ¼ 0:47, and (c) K ¼ 0:94. The color map indicates the
velocity magnitude u ¼ jvj showing how the edge flows propagate to the interior of the system. The data are obtained from 640 independent simulations for / ¼ 0:32 with
L ¼ 170r and the normalization factor rX=2 corresponds to the rotor surface velocity.
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on average, the flow necessarily vanishes at the unit cell boundary.
Taking into account the far flow behavior can be done by simply sub-
tracting the value of vu at the boundary (r ¼ L=2) from Eq. (5) in
order to force the flow to vanish at r ¼ L=2 [dotted line in Fig. 3(b)].
A quadratic interpolation scheme between the two lines matches the
simulated profile, showing that we indeed obtain a crossover defined
by the flow dictated by the edge current and continuity across the peri-
odic image.

In order to evaluate the intensity of the flow as a function of the
density and obstacle size, we compare the velocity at a fixed distance
very close to the obstacle surface, r� ¼ D=2þ 1:25r. After plugging in
r� into Eq. (5), we note that the edge flow attains a constant for
D ! 1. Comparisons to simulation results are shown in Fig. 3(c)
together with Eq. (5) for vuðr�Þ as a function of D=ð2rÞ, where the
value of gR=g ¼ 0:5360:02 is obtained as a best fit [also used in
Fig. 3(b)]. Note that the value of gR in Eq. (5) is not a priori known for
the MPC solvent, such that this fit to the simulation data can be con-
sidered as an indirect measurement of gR. The obtained agreement is
very satisfactory. The deviations are density dependent and therefore
consistent with an undetermined weak density dependence of both g
and gR.

40 Note that in our treatment the edge flow is solely initiated by
the unidirectional rotational stresses exerted by neighboring rotors
directly at the wall. Hydrodynamic forces between a rotating colloid
and a convex no-slip boundary are not taken into account since they
are expected to be negligible.

C. Pinning vortices to obstacles

The actual particle trajectories in Fig. 1 are largely chaotic, while
the edge velocities characterized until now in Figs. 2 and 3 refer to an
average over large times and different simulations. In order to quantify
how strongly pinned are the individual rotor trajectories around the
circular obstacles, we define the pinned vortex order parameter as41,42

WðrÞ ¼ 1
1� 2

p

hjvi � êuðriÞjiri2SðrÞ
hjvijiri2SðrÞ

� 2
p

" #
; (6)

where êu is the unit vector into the azimuthal direction, h�iri2SðrÞ
denotes an average over all rotors i with positions ri in a circular shell
of width Dr ¼ r=6 at radius r, and the rotors’ positions are measured
with respect to the center of the obstacle. The value of WðrÞ is then
averaged over trajectories and realizations. For perfect persistently cir-
cular, carousel-type trajectories around the obstacle, jvi � êuðriÞj ¼ jvij
and thus W ¼ 1. For a completely random trajectory, vi and êuðrÞi
are decorrelated, and hjvi � êuðriÞji ¼ hjvijihj cos#ji ¼ 2hjviji=p,
such that W ¼ 0. For radial trajectories, we have W < 0. In the bulk
case, the absence of obstacles makes the system translational invariant,
which corresponds precisely to W ¼ 0. The parameter can thus be
regarded as an order parameter for vortical dynamics pinned around
the obstacles with respect to the radial distance from the surface. The
colloids’ instantaneous velocity bears a strong influence of thermal
dynamics due to the collisions of the colloids with the fluid particles.
These contributions lead to a systematic decrease in WðrÞ, because
the thermal contributions are uncorrelated and yield WðrÞ ¼ 0.
Accordingly, we use pre-averaged Euler rotor velocities for the calcula-
tion of WðrÞ in Eq. (6), i.e., ½riðt þ DtÞ � riðtÞ�=Dt, with DtX ¼ 0:4,
the time in which the rotors have traveled a distance of about r=6.

The obtained values for WðrÞ are displayed for varying confine-
ment parameters in Fig. 4(a) and varying density in Fig. 4(b). The
rotors’ dynamics show circular trajectories predominantly at the obsta-
cle surface, which is related to Wmax, the maximum value of W at the
smallest r values. With increasing distance to the obstacle, the rotors
lose their coherence with the edge flow such that the trajectories
become less circular andW decays with r. This decay can be character-
ized by the penetration depth l�, this is the value at which
Wðl�Þ � 0:1, still accounting for a weak edge flow significantly higher
than the background noise. The dependences ofWmax and l� with both

FIG. 3. Edge flows and a stationary flow profile. (a) Schematic of the system with fixed obstacle in black, rotating colloids in gray, and solvent particles in blue. Emergence of
unidirectional hydrodynamic stresses at the boundary leading to the edge flow illustrated by blue arrows, steric wall-colloid interactions by the red arrow, and excluded volume
by a shaded area. (b) Azimuthal flow profile around an obstacle with D=r ¼ 80 normalized by angular velocity density ~X. The dashed line corresponds to Eq. (5), the dotted
line corresponds to the same line displaced by the value at the unit cell boundary, vu½ðL� DÞ=2�, and the dash-dotted line corresponds to a quadratic interpolation between
the two previous ones. (c) Normalized average colloid velocity directly at the obstacle boundary r� ¼ D=2þ 1:25r against size of the obstacle at different rotor densities /.
Symbols correspond to simulation data, and the line to a least-square fit to the points according to Eq. (5). Standard deviation obtained from the fit is depicted as a shaded
area. The data in (b) and (c) are obtained from five simulations of length TX=ð2pÞ ¼ 2950 and four simulations of TX=ð2pÞ ¼ 1030, with one single unit cell, and L ¼ 170r.
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K and / are shown in Figs. 4(c) and 4(d). Larger values of K and of /
show larger values of Wmax, with a similar dependence to the rotor
velocity at the edge, as shown in Fig. 3(c). This similarity is due to the
fact that the edge current leads to the vortical order W, although the
values for jvuðrÞj and WðrÞ are not directly proportional, since devia-
tions from the steady-state profile in vu are averaged out, while in
WðrÞ the instantaneous deviations lead to a systematically smaller
value. The penetration depth l� increases monotonically with both K
and /, stating that the circular flow around the obstacle has a deeper
impact on the created flows in the chiral active fluid around the obsta-
cle when the edge current is stronger. Additionally, at large densities
/, the active turbulent vortex formation is prevented by steric interac-
tion between the rotor,7 such that the contributions of the edge current
to the overall dynamics become more important. For K ! 1 the surfa-
ces of neighboring obstacles are increasingly close to each other, and
the penetration length saturates, for K ¼ 0:94, for example, l� reaches
a maximum of 5r which is exactly in between both obstacles.

D. Odd and enhanced effective diffusion in a
patterned environment

Isolated rotors move with a purely Brownian motion with a con-
stant diffusion coefficientD0, which is identical to that of a passive col-
loid. In the presence of neighboring rotors, self-diffusion is enhanced
since particles mutually roll over each other’s surface and thus escape
the phase-space-limiting effect of mutual steric hindrance upon inter-
particle collisions. The induced translational motion of the rotors
enlarges the standard parallel self-diffusion coefficient Dk, i.e., parallel
to the density gradient, while the transverse interactions lead to the
emergence of fluxes perpendicular to density gradients, which manifest
in odd or anti-symmetric contributions to the diffusion tensor; this is
the odd diffusion coefficient D?,22,43,44 typical of chiral active materi-
als. Fick’s law for the connection of diffusive flux j and the colloidal
density q reads j ¼ �D � rq with the diffusion tensor D being com-
posed of self-diffusion coefficientDk in the diagonal and the odd diffu-
sion coefficient D? as anti-symmetric elements. In bulk conditions,
the divergence of the anti-symmetric tensor elements vanishes, and
only the even diagonal elements remain, such that the diffusion equa-
tion remains unaltered. However, the transverse interactions are the

microscopic origin for the rotors’ translational velocity, which then
increases with density7 and consequently Dk increases also with /. An
increase in/ leads at the same time to an increase in the effective solvent
viscosity as interparticle collisions become more frequent, ultimately
slowing down particle transport. An optimal trade-off between transport
facilitation and hindrance at / 	 0:12 has already been investigated7

from the study of the mean square displacements (MSD). The odd
diffusion coefficient can also be measured in bulk systems making
use of Green–Kubo-like relations43 D? ¼ limt!1ðhDryðtÞvxð0Þi
�hDrxðtÞvyð0ÞiÞ=2, an expression which is non-vanishing due to the
transverse interactions intrinsic to chiral active systems, as illustrated in
Fig. 1(a). In our case this calculation yields D? ¼ ð14610ÞD0,
measured from twelve individual simulations of total length
TX=ð2pÞ ¼ 1480 at / ¼ 0:32, where D0 is the diffusion coefficient of
isolated rotors, which is identical to the diffusion coefficient of a passive
colloid.7

The introduction of obstacles interacting with the chiral active
fluid modifies the diffusive density evolution.25 At the obstacle bound-
aries B, the no-flux condition, i.e., ðD � rqÞ � njB ¼ 0, with n the nor-
mal vector to the surface, only limits the diffusive flux normal to the
obstacle surface but not the corresponding diffusive fluxes perpendicu-
lar to the surface stemming from the perpendicular fluxes. This means
that the rotors do not only roll around one another,25,45 but also along
the obstacle surface, inducing a directional diffusive flux and an overall
enhancement of the diffusion due to the presence of the obstacle,
which we denote as Deff . To illustrate this extent, Figs. 5(a) and 5(c)
(Multimedia view) show the time evolution of the thus obtained non-
homogeneous diffusive dynamics of tagged rotors. We are following
the dynamics of tagged rotors in a system of approximately homoge-
neous density; the overall density remains constant. We quantify the
time evolution of the density of such tagged rotors, as well as their local
flux. Density is calculated in square bins of area ð2:5rÞ2, and the flux is
obtained by taking into account how many individual tagged rotors
move into neighboring bins per time and line length 2:5r. Both den-
sity and flux are time averaged over the full trajectory, over nine equiv-
alent areas in a simulation domain of nine obstacles, and over twelve
simulations in order to reduce fluctuations. The tagged particles spread
out with a clear directionality due to the presence of the obstacles, as
shown in Fig. 5. The tracer density cloud entwines around the walls of

FIG. 4. Transition from chaotic to ordered circular trajectories around the obstacles. (a) Vortex order parameter at / ¼ 0:20 for varying obstacle size K revealing that the circu-
lar flow around the obstacle is maximized for large obstacles. (b) Vortex order parameter for K ¼ 0:12 for varying rotor density / displaying an increase in circular flow around
the obstacle with increasing density. Both trends in (a) and (b) are captured in (c) and (d) showing in the top panel the height of the dominant maximum at the obstacle fluid
interfaceWmax and in the bottom panel, the penetration depth of the vortical order l� which satisfiesWðl�Þ ¼ 0:1, against K (c) and / (d). Statistics as in Fig. 3.
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the obstacles, and a directed flow along the walls is created, leading to
the active transport of rotors to neighboring unit cells of the lattice.
The emergence of flux densities not only down but also perpendicular
to the tracer density gradient and along the obstacle surfaces into the
direction predetermined by the chirality axis is a clear sign of odd dif-
fusive contributions. Note that although the introduction of obstacles
and boundaries into the chiral active fluid leads to a drastic change of
the overall dynamics, the origin of the transverse interactions and thus
D? remains unaffected.

In order to characterize the effect of the obstacles in the overall
diffusion, we measure the parallel diffusion coefficient as obtained
from the long-time limit of the time and ensemble averaged rotors’
mean square displacement [MSD, Fig. 5(d), inset] in the obstacle lat-
tice hDr2ðtÞi!t!1 4Deff t. The measured diffusion coefficients are
plotted as a function of the lattice confinement parameter K, as is
shown in Fig. 5(d) for different colloidal densities /. The diffusion
coefficient in bulk, Deff ðK ! 0Þ ¼ Dk, this is of a system without
obstacles at the respective density, is used as a normalization factor,
and the measured values are presented together with the average over
all densities at given K. We can clearly see that the pattern of the envi-
ronment systematically enhances the effective diffusive particle trans-
port over a broad range of K. This diffusion enhancement is obvious
for small values ofK and reaches a maximum atK ’ 0:1 with an aver-
age enhancement of about a factor of 2, with respect to a bulk system
(K ¼ 0). Only after K exceeds 0.5, the effective constraint or cage by
the obstacles cannot be compensated by the transport facilitation by

“rolling around” the obstacle wall, such that the effective diffusion
coefficient becomes smaller in comparison to a system without
obstacles. Evidently, for K ! 1 the passage connecting the two areas
enclosed by four obstacles each becomes very narrow, such that the
MSD is indicative of temporal caging, i.e., it shows to saturate and
becomes diffusive again at late times [see inset of Fig. 5(d)]. For
/ ¼ 0:32 and K ¼ 0:96, the created fluxes at the obstacles’ boundaries
dominate the overall diffusive dynamics, similar to the behavior of the
edge flow and the vortex pinning. As a result, the enhancement and
decrease in the effective diffusive transport by virtue of boundary
fluxes and excluded volume, respectively, cancel, such that Deff

approaches the value of a system without boundaries at the same den-
sity. This is in contrast to systems at lower density, where the Deff is
dominated by transport obstruction by excluded volume.

The data in Fig. 5(d) are individually shown in Figs. 5(e) and 5(h)
to make explicit the dependence of the effective diffusion coefficient nor-
malized by the colloidal space exploration per circulation 2pDeff=ðr2XÞ
vs K at each density. Additionally, the density dependence of the effec-
tive diffusive transport in the obstacle lattice can be inferred here, show-
ing that Deff first increases with density, reaches a maximum at about
/ ¼ 0:12, and decreases upon further increasing the density, in accor-
dance with the behavior in a system without obstacles.7

E. Effect of substrate friction

Chiral active fluids are typically studied in two-dimensional active
fluid sheets sedimented on a glass substrate7,46,47 or at an interface.2

FIG. 5. Effective diffusive chiral mass transport in an obstacle lattice. (a)–(c) Evolution of tagged rotor density in a system of constant density. Time increases from left to right
tX=ð2pÞ ¼ 0; 222; 444, the background color code indicates the density of tagged rotors, and the arrows indicate the direction and intensity of local particle flux. The non-
perpendicular angle of particle flux with the density gradient indicates that the dynamics are translationally non-invariant and that both parallel and perpendicular components of
the diffusion are non-vanishing. Simulation parameters are / ¼ 0:32, L ¼ 35r, and K ¼ 0:14. (d) Effective diffusion coefficient normalized with bulk value DeffðK ¼ 0Þ
(orange bullet) vs K at different densities, color code as in Fig. 4(b). Black crosses denote average at given K over all densities and the black dotted line represents a corre-
sponding spline interpolation. Inset: Mean-square displacement of the rotors for varying obstacle size K at fixed density / ¼ 0:20, color code as in Fig. 4(a). Terminal diffusive
regime indicated by the magenta line. The orange dashed line indicates bulk results, i.e., K ¼ 0. (e)–(h) Effective diffusion coefficient for varying density normalized by area
exploration rate in units of square-diameters per rotor circulation. All lines are shown to the same scale. Orange bullets correspond to a bulk system without obstacles.
Simulation domain size in (d)–(h): L ¼ 170. Multimedia available online.
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This implies that a finite friction c between the fluid layer and the
substrate or the interface damps any created flow,28 an effect that
can be related to a solvent damping length k, which decreases with
increasing friction. Analytically this can be taken into account by con-
sidering a linear damping force density �cv on the right-hand side of
Eq. (2),22,48–52 which allows us to characterize k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið� þ �RÞ=c

p
, with

� and �R the translation and rotational solvent kinematic viscosities
(see the Appendix for details). In an MPC fluid, substrate friction has
been introduced by incorporating a very small number of evenly scat-
tered virtual particles in the collision step with zero-mean Maxwell–
Boltzmann distributed velocities.28 The exchange of momentum
between fluid and virtual particles serves as a momentum sink, such
that changing the density of these virtual particles results in a change
of the friction coefficient c and related solvent damping length k.

In the case of a patterned environment, half the distance between
the obstacles’ surfaces d � ðL� DÞ=2, where the average flows do nec-
essarily cancel, determines the system dynamics together with the sol-
vent damping length k. For vanishing and small values of the friction,
k ! 1 and in particular, k > d, the flows originating at the surface of
neighboring obstacles interact while having opposite directions.
Consequently, the flows created at the opposite surfaces of two neigh-
boring obstacles diminish each other. In this regime, increasing the
friction decreases the interactions of the flows created at different
obstacles at distances d, while the origin of the flow creation at the sur-
face is still very strong. Hence, increasing the substrate friction dimin-
ishes the effect of neighboring obstacle counter-flow, and the overall
flow increases. For larger values of the substrate friction, such that
k < d, the effect of the counter-flow becomes increasingly negligible,
and increasing the friction further results in the more intuitively
expected decrease in the generated flow velocity, since increasing the
friction ultimately decreases the colloids’ velocities.

The azimuthal fluid velocity decays with the distance to the obsta-
cle surface as shown in Fig. 6(a), with a clear non-monotonous depen-
dence on the value of substrate friction, with a maximum for the
k ¼ d case. This is more clearly observed in the inset of Fig. 6(a),
where the maximum of the normalized average colloid velocity near
the obstacle boundary vuðr�Þ is depicted. The edge flow is maximized

for k=d 
 1, a regime where the influence of the counter-flow over the
length scale d is damped, but the individual rotor actuation on the scale
r is still large. For completeness, we also calculate the variation of the
pinned vortex order parameter in Fig. 6(b), which also shows a non-
monotonous behavior. This non-monotonicity has the same origin as
the one for the decay of the azimuthal flow velocity and can be very
clearly observed in Fig. 6(c) for the maximum pinned vortex order
parameterWmax and its penetration depth l�.

IV. SUMMARY AND CONCLUSIONS

In this work, we study how a two-dimensional suspension of rotat-
ing colloids modifies its behavior due to the interaction with periodically
arranged circular obstacles. A robust edge flux around each obstacle sur-
face emerges in the direction predefined by the system’s chirality and
coexists with the chiral active turbulent bulk behavior, that is, the forma-
tion of multiscale vortices. The relative importance of the systematic edge
flow and the active turbulent behavior is tuned by the edge flow strength
and the fact that the obstacles additionally block the formation of large
active turbulent eddies by virtue of steric interactions between the rotors
and the obstacles. The edge mode decays with the distance to the obstacle
surface, and its intensity can be maximized by modifying the rotor den-
sity, rotational velocity, the obstacle diameter, and also the surface fric-
tion. These parameters also modify the coherence of the rotation around
the obstacles. This is related to the intensity of the flow field and charac-
terized by the here defined pinned vortex order parameter, which quanti-
fies a smooth transition from chaotic to coherent vortex flows. Specific to
chiral active systems in contact with circular obstacles is the appearance
of transverse anti-symmetric and non-reciprocal interactions and unusual
transport coefficients with anti-symmetric contributions to the diffusion
tensor, which acts perpendicular to the direction of the density gradient
and is absent in usual fluids. The diffusive dynamics are also modified by
the edge mode on the obstacle surface, since it promotes transport of
rotors from one unit cell of the obstacle lattice to the next one by rotors
rolling along the obstacle surface. The dependence on the obstacle size
shows to be universal, and an optimal trade-off between transport facilita-
tion and obstruction is found for a relative obstacle size of K ’ 0:1.

FIG. 6. Vortex order under the influence of a frictional substrate. (a) Azimuthal velocity profile around an obstacle. Parameters in all simulations K ¼ 0:33, / ¼ 0:14, and c as
indicated in the inset. Simulations performed in a square domain of length L ¼ 150r featuring nine obstacles of diameter Ri=r ¼ 16:6 and Lobs ¼ 50r, and results averaged
over each of those and over ten individual simulations each of length TX=ð2pÞ ¼ 300. Inset: Maximal velocity in profile against the substrate friction coefficient c. (b) Decay of
the vortical order of flow created at the obstacle surfaces for varying friction coefficient c. (c) Top panel: Maximum of at the contact value of W against friction. Lower panel:
Penetration depth of the radial order as in Fig. 4. The values for the decay lengths corresponding to the non-zero friction coefficients are (in order of increasing c)
k=r ¼ 14:5; 10:8; 7:3; 3:2.
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Our results are not only of profound theoretical interest for the
understanding of the transition from active turbulent dynamics to
coherent vortex flows. They also carry implications for establishing
design principles for transport in chiral active materials by introducing
boundaries. When chiral active matter is under complex confinement
conditions, the breaking of detailed balance in non-equilibrium sys-
tems can be directed to act in a predetermined direction,53 such that
steady-state currents and vorticity fields,18 directed transport processes
occur,54 or apparent chaotic dynamics can be tamed.55 Accordingly,
the study of chiral active matter in a patterned environment is an
important field of research with promising applications for the design
of synthetic smart materials with tailored behavior.
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APPENDIX: DAMPING LENGTH

The influence of an underlying substrate can be taken into
account in the generalized Stokes equation by adding a linear fric-
tion term28,51,52 to Eq. (2) leading to

� 1
q
rpeff þ �r2vþ �êz �rð2~X � xÞ � cv ¼ 0; (A1)

where � ¼ g=q and �R ¼ gR=q. Moreover, transforming Eq. (A1)
to polar coordinates again, e.g., in order to describe the flow created
around a rotating colloid, we obtain

0 ¼ ð� þ �RÞ @2
r vu þ 1

r
@rvu � vu

r2

� �
� cvu: (A2)

This equation can be transformed to the Bessel equation and is
solved by a superposition of Bessel functions of the first and second
kind,28 decaying on the lengthscale k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið� þ �RÞ=c

p
. Accordingly,

in systems with non-negligible rotational viscosity, the characteristic
decay length additionally depends on gR, whereas in systems with
gR 
 0 we obtain k ¼ ffiffiffiffiffiffiffiffi

�=c
p

. In the MPC algorithm, the fluid par-
ticles’ momentum transfer to the virtual substrate particles
(momentum sink) can be calculated explicitly in terms of the simu-
lation parameters28 and yields

c ¼ 1
h

qs
qþ qs

1� 1
2ðq� 1Þ

� �
; (A3)

where qs is the density of the virtual substrate particles.
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