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Building trust in automated experimentation: uncertainty

quantification in the era of high-throughput biolabs
Wolfgang Wiechert **, Laura M Helleckes®* and Katharina Néh'

Uncertainty quantification (UQ) is central to data analytics,
particularly in the life sciences, where experiments are often
affected by significant measurement noise. In emerging
automated high-throughput biolabs, such as biofoundries,
parallel cultivation systems, and smart analytics platforms, UQ
should be a built-in feature rather than an optional add-on.
These environments pose a unique challenge: robotic liquid
handling must be combined with miniaturized biochemical
analytics (including omics), process monitoring, online data
analytics, and digital control. Although traditional UQ methods
from classical and computational statistics remain valid and
applicable, integrating them into highly parallelized
experimental and digital workflows presents new challenges.
These include data preprocessing, model-based data
integration, decision-making, and experimental control. In this
review, we examine the emerging demands on UQ in
automated experimentation and survey recent frameworks,
strategies, and computational tools designed to address them.
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Introduction
Generating extensive quantitative data sets is essential
to all systemic biological disciplines, including systems
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biology, systems medicine, metabolic engineering, and
process development. These data sets can contain raw
measurements, such as mass spectrometry data; pro-
cessed data, such as peak areas or image analysis results;
model-based parameter estimates, such as growth para-
meters; or data-based model predictions. In bio-
technology, key performance indicators (KPIs), such as
growth rates and product or space-time yields, are im-
portant for characterizing production organisms and
processes. Signal-to-noise ratios are much worse in
biology than in other disciplines, such as physics or en-
gineering (Figure 1). This underlines the importance of
UQ for the life sciences, which is the only way to ensure
trust in data.

Automation speeds up data generation tremendously and
eliminates human lab-worker variability [1-3]. However,
miniaturization also introduces even higher noise levels
caused by small-scale liquid handling and other opera-
tions [4]. In addition, miniaturized instruments often re-
place standard measurement devices with faster, but
noisier alternatives that can be better integrated into ro-
botic platforms [5]. For instance, optical density (OD)
measurements in lab-scale cultivations are replaced by
backscatter data in parallelized micro cultures [4], or an
High-performance liquid chromatography device is re-
placed by enzymatic assays [4].

Figure 1 illustrates UQ with a strain selection experi-
ment performed in the Jiilich Biofoundry. In this proof-
of-concept study, a library of 96 microbial production
strains was screened in six batches performed in paral-
lelized micro-cultivations with 48 strains each. The
maximum product formation rate of a strain achieved
during the cultivation period (max dP/dt) was chosen as
KPI. Computing this KPI required a Bayesian process
model based on noisy and scarce product data. Re-
plicates were performed to reduce uncertainty. This
study clearly demonstrates some key challenges of UQ:

1. Thorough UQ is necessary to judge data quality.
Otherwise, the quality of the data is strongly over-
estimated; that is, reducing the information to the
medians shown in Figure 1 is completely misleading.
The partially even bimodal KPI distributions give
much more information.

2. UQ is crucial for automatic experimental design. By
repeating experiments, the uncertainty of KPIs for
high-performing strains can be reduced through fur-
ther exploitation, whereas low performers can be
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Importance of UQ for biological data processing illustrated with microbial strain selection: The violin plot with medians visualizes the uncertainty within
a difficult-to-determine KPI for a library of 96 microbial production strains. A total of 288 single experiments were performed, including replicates.

Details are given in the main text.

excluded from being revisited, thus enabling more
efficient exploration of the strain library. This ex-
plains why the low-performer KPIs have higher un-
certainties than those of the high-performers.

3. Making an informed decision for strain selection
needs to account for uncertainty. After 6x48 experi-
ments, there is no doubtlessly best-performing strain;
rather, a group of high-performers can be selected for
further investigation.

Generally, automation entails significant changes in how
data is evaluated because manually inspecting large vo-
lumes of heterogeneous data becomes impractical. Thus,
to reach their full potential, automated systems require a
versatile digital infrastructure [2,3,6,7] to manage con-
current experimental workflows, collect data, autono-
mously make decisions, or plan new experiments. Since
UQ must be an integral part of such digital infra-
structures, new data-scientific challenges arise. Auto-
mated experimentation is a dynamically developing
field, and no unique approach or even a standard for
workflow-integrated UQ has thus emerged yet. The
major obstacles and some partial solutions will be dis-
cussed below.

Uncertainty quantification in a nutshell
Although alternative approaches, such as interval cal-
culus or fuzzy set theory, have been proposed, main-
stream UQ is today based on a probabilistic framework.
However, because UQ is a broad field [8-11], it comes in
several flavors. In the context of computational work-
flows, uncertainty propagation (UP) is the most im-
portant aspect discussed below:

Probabilistic approach: Probability distributions provide
the most informative way to describe uncertainty be-
cause they support probabilistic reasoning and the de-
rivation of confidence intervals. While the theoretical
foundations for propagating distributions through (non-
linear) functions are well established, exact solutions are

in most cases practically infeasible, especially in high-
dimensional and multivariate settings.

Moment-based approach: Variance, and respectively
standard deviation, reduce a probability distribution to
characteristic measures. In the multivariate case, this
concept generalizes to the covariance matrix. UP for
these quantities by linear approximation (aka Gaussian
error propagation) [12-14] is well established. However,
this linearized approach to UP can be risky in the pre-
sence of strong nonlinearities, poor signal-to-noise ratios,
and violated assumptions on distribution normality and
independence [15].

Monte Carlo approach: Replacing a probability dis-
tribution with a large sample and propagating this data
through computational workflows is conceptually
straightforward [16,17] and broadly applicable to any
kind of distribution and nonlinearity. However, the re-
quired large sample sizes entail a computationally ex-
pensive statistical evaluation, which can become
prohibitive in high-dimensional and time-critical ex-
perimental settings [18].

The Bayesian approach: Bayesian statistics is grounded in
classical probability theory, but differs from frequentist
approaches in its interpretation. Probabilities represent
degrees of belief or states of knowledge, rather than long-
run frequencies [19]. Prior knowledge is explicitly en-
coded in the form of a prior distribution, which is updated
via Bayes’ theorem when new data arrives. Like other
approaches, Bayesian methods rely on statistical mea-
sures, or special Monte Carlo (MC) algorithms, but the
results can reflect data, model, and parameter uncertainty
[4,20-22].

Approximation approaches: In this review, the term re-
fers to a diverse family of methods that replace dis-
tribution functions or models with surrogates that are
casier to handle. Examples are polynomial chaos [23,24],
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spectral expansion [25], surrogate modeling [26], or
conformal prediction [18]. Such approximations can be
combined with any of the aforementioned approaches.

UQ and UP methodologies are well developed in theory
[8,27,28], and supported by numerous open-source im-
plementations [12,24,29-33]. Some methodological
comparisons are found in Refs. [17,22,27]. Also, the ne-
cessary computing power is available today, even for
compute-intensive MC methods. What, then, are the
data science-related challenges in the context of auto-

mated experimental workflows?

Preprocessing measurement data with
uncertainty quantification

UQ starts with the preprocessing of raw measurement
data (Figure 2). For historical reasons, metrology and the
analytical sciences have developed distinct vocabularies
and even industry standards for UQ [34,35]. Importantly,
analytical terms such as accuracy, precision, trueness, limit
of detection, and calibration can be mapped onto corre-
sponding statistical terminology, such as location, spread,
bias, etc. [28]. In the context of robotic workflows, this
terminological confusion becomes critical because a
sharp separation between analytical steps and other ex-
perimental operations within robotic systems no longer
exists.

Raw data produced by analytical instruments, such as
High-performance liquid chromatographys, mass spec-
trometers, laser backscatter instruments, or microscopes,
do not directly represent the quantities of interest.
Moreover, miniaturized automated experimentation
often requires operating outside the linear calibration
regime. For instance, dilution series for measuring con-
centrations are often avoided. Measurement noise can
have a non-normal distribution and may strongly depend
on the measured quantity (heteroscedasticity). In this
situation, which exceeds analytical textbook knowledge,
advanced automatic calibration methods have recently
become available [4]. It is important to note that a cali-
bration function maps the wanted quantity to the cor-
responding measurement (e.g. biomass concentration to
OD), but is actually used in the inverse direction (e.g.
from OD to biomass). This poses additional challenges
for correct UP [4,28,36].

In the life sciences, experimental protocols heavily rely
on liquid handling operations [3,6,37]. All pipetting
steps influence the experimental error, and these errors
accumulate. Usually, the uncertainty of elementary op-
erations in an experimental protocol (e.g. pipetting,
weighing, detection, and counting) is well characterized.
Thus, bottom-up physical modeling of the experimental
workflow (mostly mixing of liquids) provides an ex-
cellent tool to estimate the cumulative error arising from
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General scheme of the physical and digital workflows in an automated Biolab. Measurement data from the real system is pre-processed by different
computational procedures to calculate the use data. The use data are then fused and processed based on mechanistic or ML models, which may be
hybrid. Highly condensed data can be used to maintain human involvement for potential interventions or decision-making. Ideally, low-level control of
the process, high-level decisions, and even smart design of new experiments will be performed in closed-loop operation.
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a sequence of elementary operations, each contributing
some noise [12-14,38]. Such error models — often based
on cause-and-effect diagrams [14] — have the added
advantage of identifying and improving major factors
influencing the overall noise level [13,14,17]. For com-
plex operations like chromatography [39], cell counting
[40,41], or Polymerase Chain Reaction procedures [42],
error modeling based on deep process understanding is
possible, but demanding.

In high-tech analytical instruments, such as mass spec-
trometers, the calculation of desired data (e.g. peak areas)
from raw data (e.g. spectra) is often performed using built-
in vendor software. The code is usually proprietary, and
intrinsic UQ is often unavailable or poorly documented.
Consequently, poor quantifications (e.g. for overlapping
or irregular peaks) must be manually corrected [43,44].
This gap can be bridged by making raw spectra data
evaluation available as open source software [44-46].
Nevertheless, in automated workflows, it is critically im-
portant to have a quality indicator that expresses the
regularity of a signal [47,48]. It is recommended to define
quality standards and skip data sets exposing irregular
patterns in fully automated procedures.

Single-cell cytometry [41] and live-cell imaging [49] are
increasingly important in automated analytics. Image
and video processing pipelines involve preprocessing,
cell segmentation, cell tracking, and feature quantifica-
tion, each of which presents unique challenges —
especially in time-resolved (video) data, where real-time
or near-real-time processing is required [50]. While deep
learning methods, particularly convolutional neural net-
works, have advanced many of these tasks, robust un-
certainty quantification remains an underdeveloped area,
despite its critical role in assessing model robustness and
guiding biological interpretation [50,51].

Identifying, eliminating, or at least correcting often very
subtle systematic errors [52] is a common theme for gen-
erating reliable data on automated platforms. Data correc-
tion always requires additional information given by
empirically determined correction factors or by using
quantities derived from other measured data. Consequently,
data correction involves additional uncertainties [13]. Here,
the well-known bias-variance tradeoff must be considered:
the bias of corrected data may decrease, but the variance
increases at the same time. Thus, data correction is not al-
ways beneficial. As a special case, batch effects [4,34,53] are
common in parallelized experiments (Figure 3), which can
often be attenuated by normalization operations [54,55].

Uncertainty quantification for advanced data
processing algorithms

Figure 2 distinguishes between data preprocessing (cf.
Section Preprocessing measurement data with uncertainty

quantification) and subsequent model-based data in-
tegration. The latter is concerned with merging hetero-
geneous data sources, model-based evaluation of data,
making predictions, as well as computing quantities and
visualizations for decision support.

Mechanistic mathematical models, such as cell models on
different levels of detail [11], are one approach for in-
tegrating heterogeneous data, such as concentration and
process data, and for making predictions based on this data.
Nonlinear regression (including its Bayesian counterparts) is
the most common method for deriving parameters and de-
cision-relevant data, such as KPIs, from pre-processed data
sets. Although UP for nonlinear regression models is well
established [11,20,21,27], it notoriously suffers from multiple
optima and approximation errors due to model linearization.
However, low-dimensional models with well-understood
nonlinearity and sensitivity to noise influences (e.g. growth
models) can often be adjusted to run robustly in an auto-
mated framework [4]. Here, Bayesian regression approaches
[20-22] have specific advantages at a higher computational
cost. Novel methods like conformal prediction [18] aim to
reduce this cost while providing valid uncertainty estimates
without the need for Bayesian approaches.

In recent times, data-based machine learning (ML) has
matured into a powerful alternative to mechanistic model-
based classical regression [56]. However, deep learning
models require extensive training with high-quality anno-
tated data, which is often unavailable even in the context
of high-throughput experimentation. For this reason, hy-
brids between mechanistic models and ML approaches are
becoming popular [11,23,57,58], which require less data for
model training. Different hybrid model architectures have
been proposed, such as bio/physics-informed neural net-
works [59,60] or physical balance equations with integrated
ML modules for learning kinetic laws [57]. Importantly,
UQ for ML is still in its infancy [51,61].

Model uncertainty remains a critical but underexplored
aspect in quantitative biology, particularly in complex
experimental systems. Single-model approaches often
yield overconfident estimates — both in predictions and
parameter inferences. In contrast, multimodel strategies,
such as Bayesian model selection [62] and averaging [63],
offer principled statistical ways to reflect this uncertainty
and improve robustness [63]. Looking ahead, such cut-
ting-edge methods can play an increasingly important role
in automated experimentation because they enhance the
robustness and trustworthiness of the results.

Integrating uncertainty quantification into
multistep concurrent workflows

Automatic experimentation couples an experimental
with a concurrent digital workflow [3,10,37,64]. Gen-
erally, a UQ framework for automated experimentation
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Exemplary probabilistic model for enzyme kinetic measurements. Product absorbance and reaction temperature of a reaction are measured in the
laboratory at eight time points (light blue). The aim is to model product concentration and compare it with the measured absorbance using a likelihood
function to quantify uncertainty. The reaction of each of the 12 biocatalysts (distribution at bottom center) is influenced by reaction temperature as well
as a batch effect. Since experiments are conducted in two batches, pipetting errors cause slight variation in the initial substrate concentration. The
model accounts for this batch effect as a distribution (right), multiplying this fluctuation with the individual reaction rate to model the specific reaction

rate in the assay.

must enable UP from measurement preprocessing,
model-based data analysis, and decision-making all the
way to control actions [19,31,65] (Figure 2). However,
end-to-end UQ in multistep workflows still suffers from
a lack of standardization and interoperability between
UQ concepts and software representations of uncertainty
(cf. Section Uncertainty quantification in a nutshell). Sim-
plifying assumptions, such as treating intermediate re-
sults as independent normal distributions, to bridge
between different workflow components, can produce
grossly incorrect results, as demonstrated in Ref. [15] for
regression model predictions. One of the most over-
looked UP problems is neglecting the often strong cor-
relations between intermediate computational results,
such as model parameter estimates [66]. This leads to
inaccurate uncertainty representations, which then pro-
pagate through all subsequent steps of the workflow.

In a rigorous approach, UP should be based on the same
UQ concept (distributions, moments, MC, etc.), applied
throughout the whole workflow. Such a unifying fra-
mework requires more effort in terms of method and
software development, but this is worthwhile because
typical statistical flaws are avoided. Three cases de-
monstrate that practical solutions are emerging to sup-
port a rigorous UQ approach:

e MC simulation provides a universally applicable
method for UP, but its computational cost can be
prohibitive for high-dimensional or computing-in-
tensive models.

e Automatic code differentiation allows efficient and
exact Gaussian UP through extensive computational
workflows by leveraging algorithmic differentiation to
compute moments of output distributions [67].

® Probabilistic programming frameworks (Figure 3)
enable full Bayesian workflows by combining model
specification and inference in a unified language,
supporting UQ across hierarchical and data-driven
models [29].

Some of the discussed methods (image analysis, regres-
sion, ML, and MC) require substantial computing re-
sources when UQ is embedded, especially when
evaluating many experiments in parallel. Therefore,
high-performance compute clusters should be an in-
tegral part of automation facilities. To facilitate paralle-
lization and orchestration of many interdependent tasks,
it is popular to represent workflows as directed acyclic
graphs (DAG) [3,6], which is well supported by widely
used workflow management systems such as Airflow,
Nextflow, or Snakemake. However, because DAGs in-
herently disallow feedback loops or iterations, circular
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logic and adaptive workflows must be handled through
higher-level orchestration layers.

In this context, the close connection to the concept of
digital twins (DT) [10,68] must be pointed out. DT's
provide modular architectures capable of representing
real processes, evaluating data, integrating hetero-
geneous data sources into unified models, making deci-
sions, guiding experiment design, and feeding results
back into the physical system. The experimental and
digital closed-loop workflow, shown in Figure 2, can also
be seen as a DT architecture. UQ for D'T's is an emer-
ging field [68], and automatic experimentation in the life
sciences can learn from these developments.

Autonomy versus human intervention

Once a robotic high-throughput system is running, in-
creasing the degree of autonomy is a big challenge.
Simple, low-level actions can easily be triggered by
measurable events. Higher-level decision-making, which
involves goal-oriented steering of screening processes
under time and resource constraints, is on the horizon. In
this context, smart design of experiment strategies and
active learning concepts [11] are emerging to make
biofoundry workflows more efficient and information-
rich [2,53]. Rather than relying on exhaustive or trial-
and-error experimentation, these approaches aim to se-
lect the most informative experiments with minimal
experimental resources [69]. In particular, active
learning adapts experiment selection on-the-fly, based
on how much new information each candidate experi-
ment is expected to yield about a new strain variant or
process parameters.

However, because irregular and unforeseen behavior is
notoriously encountered with biological systems, it
makes sense to keep the human in the loop. The big
question is, on which level of information condensation
this should be done. Doubtlessly, if low-level decisions
need to be made during the runtime of high-throughput
experiments, having humans in the loop can be a
showstopper. To support high-level decision-making,
powerful information displays, visualization tools, and
intervention mechanisms are needed, which facilitate
surveying a complex situation in a short time. UQ must
become an essential part of all these frameworks.

Recommendations for biofoundry newcomers
and the community

As emphasized by Figure 1, quantitative biological data
should always be accompanied by UQ to build trust in
the data, as well as to understand what conclusions can
or cannot be drawn. It is crucial that researchers under-
stand how to assess data, inference, and prediction
quality. As shown, the complexity of this task increases
due to the intricate workflows in automated systems and

the inability to include low-level manual data evaluation
steps. Some recommendations for newcomers:

1. Analytical calibration requires careful analysis of un-
certainties in measurement systems and should go
beyond linearity or normal distribution assumptions.
If in doubt, compare different calibration functions.

2. Calibration must be combined with UQ within an
integrative framework because both parts cannot be
treated separately in automated systems.

3. Question or benchmark automatic analysis in vendor
software.

4. Use existing UQ frameworks like probabilistic pro-
gramming languages and toolboxes [30-33] and apply
them rigorously throughout all steps of the data ana-
lysis pipeline.

This will involve a steep learning curve and ease the
specification and execution of probabilistic models
(Figure 3). Additionally, two biofoundry community
activities are suggested:

1. A survey of UQ/UP approaches and frameworks
would be highly beneficial. Based on the results, it
might be possible to derive best practice examples
and even minimal community  standards.
Benchmarking studies would further help to compare
and evaluate the performance, robustness, and ap-
plicability of different UQ approaches.

2. The strongest obstacle to making UQ available as a
tool is the variety of different digital control sys-
tems for automated labs developed around the
world. A common abstraction layer is needed to
exchange data processing workflows between
different locations.
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