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Building trust in automated experimentation: uncertainty 
quantification in the era of high-throughput biolabs
Wolfgang Wiechert1,2,*, Laura M Helleckes3,4 and Katharina Nöh1

Uncertainty quantification (UQ) is central to data analytics, 
particularly in the life sciences, where experiments are often 
affected by significant measurement noise. In emerging 
automated high-throughput biolabs, such as biofoundries, 
parallel cultivation systems, and smart analytics platforms, UQ 
should be a built-in feature rather than an optional add-on. 
These environments pose a unique challenge: robotic liquid 
handling must be combined with miniaturized biochemical 
analytics (including omics), process monitoring, online data 
analytics, and digital control. Although traditional UQ methods 
from classical and computational statistics remain valid and 
applicable, integrating them into highly parallelized 
experimental and digital workflows presents new challenges. 
These include data preprocessing, model-based data 
integration, decision-making, and experimental control. In this 
review, we examine the emerging demands on UQ in 
automated experimentation and survey recent frameworks, 
strategies, and computational tools designed to address them.
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Introduction
Generating extensive quantitative data sets is essential 
to all systemic biological disciplines, including systems 

biology, systems medicine, metabolic engineering, and 
process development. These data sets can contain raw 
measurements, such as mass spectrometry data; pro
cessed data, such as peak areas or image analysis results; 
model-based parameter estimates, such as growth para
meters; or data-based model predictions. In bio
technology, key performance indicators (KPIs), such as 
growth rates and product or space-time yields, are im
portant for characterizing production organisms and 
processes. Signal-to-noise ratios are much worse in 
biology than in other disciplines, such as physics or en
gineering (Figure 1). This underlines the importance of 
UQ for the life sciences, which is the only way to ensure 
trust in data.

Automation speeds up data generation tremendously and 
eliminates human lab-worker variability [1–3]. However, 
miniaturization also introduces even higher noise levels 
caused by small-scale liquid handling and other opera
tions [4]. In addition, miniaturized instruments often re
place standard measurement devices with faster, but 
noisier alternatives that can be better integrated into ro
botic platforms [5]. For instance, optical density (OD) 
measurements in lab-scale cultivations are replaced by 
backscatter data in parallelized micro cultures [4], or an 
High-performance liquid chromatography device is re
placed by enzymatic assays [4].

Figure 1 illustrates UQ with a strain selection experi
ment performed in the Jülich Biofoundry. In this proof- 
of-concept study, a library of 96 microbial production 
strains was screened in six batches performed in paral
lelized micro-cultivations with 48 strains each. The 
maximum product formation rate of a strain achieved 
during the cultivation period (max dP/dt) was chosen as 
KPI. Computing this KPI required a Bayesian process 
model based on noisy and scarce product data. Re
plicates were performed to reduce uncertainty. This 
study clearly demonstrates some key challenges of UQ: 

1. Thorough UQ is necessary to judge data quality. 
Otherwise, the quality of the data is strongly over
estimated; that is, reducing the information to the 
medians shown in Figure 1 is completely misleading. 
The partially even bimodal KPI distributions give 
much more information.

2. UQ is crucial for automatic experimental design. By 
repeating experiments, the uncertainty of KPIs for 
high-performing strains can be reduced through fur
ther exploitation, whereas low performers can be 
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excluded from being revisited, thus enabling more 
efficient exploration of the strain library. This ex
plains why the low-performer KPIs have higher un
certainties than those of the high-performers.

3. Making an informed decision for strain selection 
needs to account for uncertainty. After 6×48 experi
ments, there is no doubtlessly best-performing strain; 
rather, a group of high-performers can be selected for 
further investigation.

Generally, automation entails significant changes in how 
data is evaluated because manually inspecting large vo
lumes of heterogeneous data becomes impractical. Thus, 
to reach their full potential, automated systems require a 
versatile digital infrastructure [2,3,6,7] to manage con
current experimental workflows, collect data, autono
mously make decisions, or plan new experiments. Since 
UQ must be an integral part of such digital infra
structures, new data-scientific challenges arise. Auto
mated experimentation is a dynamically developing 
field, and no unique approach or even a standard for 
workflow-integrated UQ has thus emerged yet. The 
major obstacles and some partial solutions will be dis
cussed below.

Uncertainty quantification in a nutshell
Although alternative approaches, such as interval cal
culus or fuzzy set theory, have been proposed, main
stream UQ is today based on a probabilistic framework. 
However, because UQ is a broad field [8–11], it comes in 
several flavors. In the context of computational work
flows, uncertainty propagation (UP) is the most im
portant aspect discussed below:

Probabilistic approach: Probability distributions provide 
the most informative way to describe uncertainty be
cause they support probabilistic reasoning and the de
rivation of confidence intervals. While the theoretical 
foundations for propagating distributions through (non
linear) functions are well established, exact solutions are 

in most cases practically infeasible, especially in high- 
dimensional and multivariate settings.

Moment-based approach: Variance, and respectively 
standard deviation, reduce a probability distribution to 
characteristic measures. In the multivariate case, this 
concept generalizes to the covariance matrix. UP for 
these quantities by linear approximation (aka Gaussian 
error propagation) [12–14] is well established. However, 
this linearized approach to UP can be risky in the pre
sence of strong nonlinearities, poor signal-to-noise ratios, 
and violated assumptions on distribution normality and 
independence [15].

Monte Carlo approach: Replacing a probability dis
tribution with a large sample and propagating this data 
through computational workflows is conceptually 
straightforward [16,17] and broadly applicable to any 
kind of distribution and nonlinearity. However, the re
quired large sample sizes entail a computationally ex
pensive statistical evaluation, which can become 
prohibitive in high-dimensional and time-critical ex
perimental settings [18].

The Bayesian approach: Bayesian statistics is grounded in 
classical probability theory, but differs from frequentist 
approaches in its interpretation. Probabilities represent 
degrees of belief or states of knowledge, rather than long- 
run frequencies [19]. Prior knowledge is explicitly en
coded in the form of a prior distribution, which is updated 
via Bayes’ theorem when new data arrives. Like other 
approaches, Bayesian methods rely on statistical mea
sures, or special Monte Carlo (MC) algorithms, but the 
results can reflect data, model, and parameter uncertainty 
[4,20–22].

Approximation approaches: In this review, the term re
fers to a diverse family of methods that replace dis
tribution functions or models with surrogates that are 
easier to handle. Examples are polynomial chaos [23,24], 

Figure 1  

Strain

KP
I

Current Opinion in Biotechnology

Importance of UQ for biological data processing illustrated with microbial strain selection: The violin plot with medians visualizes the uncertainty within 
a difficult-to-determine KPI for a library of 96 microbial production strains. A total of 288 single experiments were performed, including replicates. 
Details are given in the main text.  
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spectral expansion [25], surrogate modeling [26], or 
conformal prediction [18]. Such approximations can be 
combined with any of the aforementioned approaches.

UQ and UP methodologies are well developed in theory 
[8,27,28], and supported by numerous open-source im
plementations [12,24,29–33]. Some methodological 
comparisons are found in Refs. [17,22,27]. Also, the ne
cessary computing power is available today, even for 
compute-intensive MC methods. What, then, are the 
data science-related challenges in the context of auto
mated experimental workflows?

Preprocessing measurement data with 
uncertainty quantification
UQ starts with the preprocessing of raw measurement 
data (Figure 2). For historical reasons, metrology and the 
analytical sciences have developed distinct vocabularies 
and even industry standards for UQ [34,35]. Importantly, 
analytical terms such as accuracy, precision, trueness, limit 
of detection, and calibration can be mapped onto corre
sponding statistical terminology, such as location, spread, 
bias, etc. [28]. In the context of robotic workflows, this 
terminological confusion becomes critical because a 
sharp separation between analytical steps and other ex
perimental operations within robotic systems no longer 
exists.

Raw data produced by analytical instruments, such as 
High-performance liquid chromatographys, mass spec
trometers, laser backscatter instruments, or microscopes, 
do not directly represent the quantities of interest. 
Moreover, miniaturized automated experimentation 
often requires operating outside the linear calibration 
regime. For instance, dilution series for measuring con
centrations are often avoided. Measurement noise can 
have a non-normal distribution and may strongly depend 
on the measured quantity (heteroscedasticity). In this 
situation, which exceeds analytical textbook knowledge, 
advanced automatic calibration methods have recently 
become available [4]. It is important to note that a cali
bration function maps the wanted quantity to the cor
responding measurement (e.g. biomass concentration to 
OD), but is actually used in the inverse direction (e.g. 
from OD to biomass). This poses additional challenges 
for correct UP [4,28,36].

In the life sciences, experimental protocols heavily rely 
on liquid handling operations [3,6,37]. All pipetting 
steps influence the experimental error, and these errors 
accumulate. Usually, the uncertainty of elementary op
erations in an experimental protocol (e.g. pipetting, 
weighing, detection, and counting) is well characterized. 
Thus, bottom-up physical modeling of the experimental 
workflow (mostly mixing of liquids) provides an ex
cellent tool to estimate the cumulative error arising from 
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General scheme of the physical and digital workflows in an automated Biolab. Measurement data from the real system is pre-processed by different 
computational procedures to calculate the use data. The use data are then fused and processed based on mechanistic or ML models, which may be 
hybrid. Highly condensed data can be used to maintain human involvement for potential interventions or decision-making. Ideally, low-level control of 
the process, high-level decisions, and even smart design of new experiments will be performed in closed-loop operation.
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a sequence of elementary operations, each contributing 
some noise [12–14,38]. Such error models — often based 
on cause-and-effect diagrams [14] — have the added 
advantage of identifying and improving major factors 
influencing the overall noise level [13,14,17]. For com
plex operations like chromatography [39], cell counting 
[40,41], or Polymerase Chain Reaction procedures [42], 
error modeling based on deep process understanding is 
possible, but demanding.

In high-tech analytical instruments, such as mass spec
trometers, the calculation of desired data (e.g. peak areas) 
from raw data (e.g. spectra) is often performed using built- 
in vendor software. The code is usually proprietary, and 
intrinsic UQ is often unavailable or poorly documented. 
Consequently, poor quantifications (e.g. for overlapping 
or irregular peaks) must be manually corrected [43,44]. 
This gap can be bridged by making raw spectra data 
evaluation available as open source software [44–46]. 
Nevertheless, in automated workflows, it is critically im
portant to have a quality indicator that expresses the 
regularity of a signal [47,48]. It is recommended to define 
quality standards and skip data sets exposing irregular 
patterns in fully automated procedures.

Single-cell cytometry [41] and live-cell imaging [49] are 
increasingly important in automated analytics. Image 
and video processing pipelines involve preprocessing, 
cell segmentation, cell tracking, and feature quantifica
tion, each of which presents unique challenges — 
especially in time-resolved (video) data, where real-time 
or near-real-time processing is required [50]. While deep 
learning methods, particularly convolutional neural net
works, have advanced many of these tasks, robust un
certainty quantification remains an underdeveloped area, 
despite its critical role in assessing model robustness and 
guiding biological interpretation [50,51].

Identifying, eliminating, or at least correcting often very 
subtle systematic errors [52] is a common theme for gen
erating reliable data on automated platforms. Data correc
tion always requires additional information given by 
empirically determined correction factors or by using 
quantities derived from other measured data. Consequently, 
data correction involves additional uncertainties [13]. Here, 
the well-known bias-variance tradeoff must be considered: 
the bias of corrected data may decrease, but the variance 
increases at the same time. Thus, data correction is not al
ways beneficial. As a special case, batch effects [4,34,53] are 
common in parallelized experiments (Figure 3), which can 
often be attenuated by normalization operations [54,55].

Uncertainty quantification for advanced data 
processing algorithms
Figure 2 distinguishes between data preprocessing (cf. 
Section Preprocessing measurement data with uncertainty 

quantification) and subsequent model-based data in
tegration. The latter is concerned with merging hetero
geneous data sources, model-based evaluation of data, 
making predictions, as well as computing quantities and 
visualizations for decision support.

Mechanistic mathematical models, such as cell models on 
different levels of detail [11], are one approach for in
tegrating heterogeneous data, such as concentration and 
process data, and for making predictions based on this data. 
Nonlinear regression (including its Bayesian counterparts) is 
the most common method for deriving parameters and de
cision-relevant data, such as KPIs, from pre-processed data 
sets. Although UP for nonlinear regression models is well 
established [11,20,21,27], it notoriously suffers from multiple 
optima and approximation errors due to model linearization. 
However, low-dimensional models with well-understood 
nonlinearity and sensitivity to noise influences (e.g. growth 
models) can often be adjusted to run robustly in an auto
mated framework [4]. Here, Bayesian regression approaches 
[20–22] have specific advantages at a higher computational 
cost. Novel methods like conformal prediction [18] aim to 
reduce this cost while providing valid uncertainty estimates 
without the need for Bayesian approaches.

In recent times, data-based machine learning (ML) has 
matured into a powerful alternative to mechanistic model- 
based classical regression [56]. However, deep learning 
models require extensive training with high-quality anno
tated data, which is often unavailable even in the context 
of high-throughput experimentation. For this reason, hy
brids between mechanistic models and ML approaches are 
becoming popular [11,23,57,58], which require less data for 
model training. Different hybrid model architectures have 
been proposed, such as bio/physics-informed neural net
works [59,60] or physical balance equations with integrated 
ML modules for learning kinetic laws [57]. Importantly, 
UQ for ML is still in its infancy [51,61].

Model uncertainty remains a critical but underexplored 
aspect in quantitative biology, particularly in complex 
experimental systems. Single-model approaches often 
yield overconfident estimates — both in predictions and 
parameter inferences. In contrast, multimodel strategies, 
such as Bayesian model selection [62] and averaging [63], 
offer principled statistical ways to reflect this uncertainty 
and improve robustness [63]. Looking ahead, such cut
ting-edge methods can play an increasingly important role 
in automated experimentation because they enhance the 
robustness and trustworthiness of the results.

Integrating uncertainty quantification into 
multistep concurrent workflows
Automatic experimentation couples an experimental 
with a concurrent digital workflow [3,10,37,64]. Gen
erally, a UQ framework for automated experimentation 
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must enable UP from measurement preprocessing, 
model-based data analysis, and decision-making all the 
way to control actions [19,31,65] (Figure 2). However, 
end-to-end UQ in multistep workflows still suffers from 
a lack of standardization and interoperability between 
UQ concepts and software representations of uncertainty 
(cf. Section Uncertainty quantification in a nutshell). Sim
plifying assumptions, such as treating intermediate re
sults as independent normal distributions, to bridge 
between different workflow components, can produce 
grossly incorrect results, as demonstrated in Ref. [15] for 
regression model predictions. One of the most over
looked UP problems is neglecting the often strong cor
relations between intermediate computational results, 
such as model parameter estimates [66]. This leads to 
inaccurate uncertainty representations, which then pro
pagate through all subsequent steps of the workflow.

In a rigorous approach, UP should be based on the same 
UQ concept (distributions, moments, MC, etc.), applied 
throughout the whole workflow. Such a unifying fra
mework requires more effort in terms of method and 
software development, but this is worthwhile because 
typical statistical flaws are avoided. Three cases de
monstrate that practical solutions are emerging to sup
port a rigorous UQ approach: 

• MC simulation provides a universally applicable 
method for UP, but its computational cost can be 
prohibitive for high-dimensional or computing-in
tensive models.

• Automatic code differentiation allows efficient and 
exact Gaussian UP through extensive computational 
workflows by leveraging algorithmic differentiation to 
compute moments of output distributions [67].

• Probabilistic programming frameworks (Figure 3) 
enable full Bayesian workflows by combining model 
specification and inference in a unified language, 
supporting UQ across hierarchical and data-driven 
models [29].

Some of the discussed methods (image analysis, regres
sion, ML, and MC) require substantial computing re
sources when UQ is embedded, especially when 
evaluating many experiments in parallel. Therefore, 
high-performance compute clusters should be an in
tegral part of automation facilities. To facilitate paralle
lization and orchestration of many interdependent tasks, 
it is popular to represent workflows as directed acyclic 
graphs (DAG) [3,6], which is well supported by widely 
used workflow management systems such as Airflow, 
Nextflow, or Snakemake. However, because DAGs in
herently disallow feedback loops or iterations, circular 
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Exemplary probabilistic model for enzyme kinetic measurements. Product absorbance and reaction temperature of a reaction are measured in the 
laboratory at eight time points (light blue). The aim is to model product concentration and compare it with the measured absorbance using a likelihood 
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as a batch effect. Since experiments are conducted in two batches, pipetting errors cause slight variation in the initial substrate concentration. The 
model accounts for this batch effect as a distribution (right), multiplying this fluctuation with the individual reaction rate to model the specific reaction 
rate in the assay.  
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logic and adaptive workflows must be handled through 
higher-level orchestration layers.

In this context, the close connection to the concept of 
digital twins (DT) [10,68] must be pointed out. DTs 
provide modular architectures capable of representing 
real processes, evaluating data, integrating hetero
geneous data sources into unified models, making deci
sions, guiding experiment design, and feeding results 
back into the physical system. The experimental and 
digital closed-loop workflow, shown in Figure 2, can also 
be seen as a DT architecture. UQ for DTs is an emer
ging field [68], and automatic experimentation in the life 
sciences can learn from these developments.

Autonomy versus human intervention
Once a robotic high-throughput system is running, in
creasing the degree of autonomy is a big challenge. 
Simple, low-level actions can easily be triggered by 
measurable events. Higher-level decision-making, which 
involves goal-oriented steering of screening processes 
under time and resource constraints, is on the horizon. In 
this context, smart design of experiment strategies and 
active learning concepts [11] are emerging to make 
biofoundry workflows more efficient and information- 
rich [2,53]. Rather than relying on exhaustive or trial- 
and-error experimentation, these approaches aim to se
lect the most informative experiments with minimal 
experimental resources [69]. In particular, active 
learning adapts experiment selection on-the-fly, based 
on how much new information each candidate experi
ment is expected to yield about a new strain variant or 
process parameters.

However, because irregular and unforeseen behavior is 
notoriously encountered with biological systems, it 
makes sense to keep the human in the loop. The big 
question is, on which level of information condensation 
this should be done. Doubtlessly, if low-level decisions 
need to be made during the runtime of high-throughput 
experiments, having humans in the loop can be a 
showstopper. To support high-level decision-making, 
powerful information displays, visualization tools, and 
intervention mechanisms are needed, which facilitate 
surveying a complex situation in a short time. UQ must 
become an essential part of all these frameworks.

Recommendations for biofoundry newcomers 
and the community
As emphasized by Figure 1, quantitative biological data 
should always be accompanied by UQ to build trust in 
the data, as well as to understand what conclusions can 
or cannot be drawn. It is crucial that researchers under
stand how to assess data, inference, and prediction 
quality. As shown, the complexity of this task increases 
due to the intricate workflows in automated systems and 

the inability to include low-level manual data evaluation 
steps. Some recommendations for newcomers: 

1. Analytical calibration requires careful analysis of un
certainties in measurement systems and should go 
beyond linearity or normal distribution assumptions. 
If in doubt, compare different calibration functions.

2. Calibration must be combined with UQ within an 
integrative framework because both parts cannot be 
treated separately in automated systems.

3. Question or benchmark automatic analysis in vendor 
software.

4. Use existing UQ frameworks like probabilistic pro
gramming languages and toolboxes [30–33] and apply 
them rigorously throughout all steps of the data ana
lysis pipeline.

This will involve a steep learning curve and ease the 
specification and execution of probabilistic models 
(Figure 3). Additionally, two biofoundry community 
activities are suggested: 

1. A survey of UQ/UP approaches and frameworks 
would be highly beneficial. Based on the results, it 
might be possible to derive best practice examples 
and even minimal community standards. 
Benchmarking studies would further help to compare 
and evaluate the performance, robustness, and ap
plicability of different UQ approaches.

2. The strongest obstacle to making UQ available as a 
tool is the variety of different digital control sys
tems for automated labs developed around the 
world. A common abstraction layer is needed to 
exchange data processing workflows between 
different locations.
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