001048163 001__ 1048163
001048163 005__ 20251117202148.0
001048163 0247_ $$2doi$$a10.1126/sciadv.adz0389
001048163 037__ $$aFZJ-2025-04531
001048163 082__ $$a500
001048163 1001_ $$0P:(DE-HGF)0$$aLi, Fali$$b0
001048163 245__ $$aMapping neurophysiological and molecular profiles of heterogeneity and homogeneity in schizophrenia-bipolar disorder
001048163 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2025
001048163 3367_ $$2DRIVER$$aarticle
001048163 3367_ $$2DataCite$$aOutput Types/Journal article
001048163 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763391953_1296
001048163 3367_ $$2BibTeX$$aARTICLE
001048163 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048163 3367_ $$00$$2EndNote$$aJournal Article
001048163 520__ $$aThe heterogeneity of psychotic disorders leads to instability in subjectively defined diagnoses. This study used a machine learning framework termed common orthogonal basis extraction (COBE) to decompose electroencephalography-based functional connectivity (FC) in patients with psychotic bipolar disorder (PBD), schizophrenia (SCZ), and schizoaffective disorder (SAD) into individualized and shared subspaces. The results demonstrated that individualized FCs captured disease heterogeneity and predicted symptom severity more accurately than raw FCs, while shared FCs revealed diagnosis-specific abnormalities and achieved an accuracy of 79.30% in differentiating PBD, SCZ, and SAD. Furthermore, molecular decoding implicated regionally selective serotonin systems and astrocytes in the neurobiological differences among disorders, suggesting disorder-specific pharmacological targets. Critically, these findings were replicated in an independent cohort, confirming the effectiveness of the COBE framework in mining neurophysiological and molecular profiles of schizophrenia-bipolar disorder. These findings advance mechanistic understanding of psychotic disorders and offer a promising avenue toward objective, clinically relevant tools for psychotic evaluation.
001048163 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048163 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001048163 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048163 7001_ $$0P:(DE-HGF)0$$aWang, Guangying$$b1
001048163 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b2
001048163 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3$$ufzj
001048163 7001_ $$0P:(DE-HGF)0$$aHe, Runyang$$b4
001048163 7001_ $$0P:(DE-HGF)0$$aYi, Chanlin$$b5
001048163 7001_ $$0P:(DE-Juel1)178872$$aDong, Debo$$b6
001048163 7001_ $$0P:(DE-HGF)0$$aYao, Dezhong$$b7
001048163 7001_ $$0P:(DE-HGF)0$$aJiang, Lin$$b8
001048163 7001_ $$0P:(DE-HGF)0$$aWu, Wei$$b9
001048163 7001_ $$0P:(DE-HGF)0$$aXu, Peng$$b10$$eCorresponding author
001048163 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.adz0389$$gVol. 11, no. 46, p. eadz0389$$n46$$peadz0389$$tScience advances$$v11$$x2375-2548$$y2025
001048163 8564_ $$uhttps://juser.fz-juelich.de/record/1048163/files/sciadv.adz0389.pdf$$yRestricted
001048163 909CO $$ooai:juser.fz-juelich.de:1048163$$pVDB
001048163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b2$$kFZJ
001048163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001048163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf$$b3
001048163 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  xupeng@uestc.edu.cn$$b10
001048163 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048163 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001048163 9141_ $$y2025
001048163 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2022$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-05-14T07:33:42Z
001048163 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-05-14T07:33:42Z
001048163 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-05-14T07:33:42Z
001048163 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2022$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
001048163 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
001048163 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001048163 980__ $$ajournal
001048163 980__ $$aVDB
001048163 980__ $$aI:(DE-Juel1)INM-7-20090406
001048163 980__ $$aUNRESTRICTED