001     1048163
005     20251117202148.0
024 7 _ |a 10.1126/sciadv.adz0389
|2 doi
037 _ _ |a FZJ-2025-04531
082 _ _ |a 500
100 1 _ |a Li, Fali
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mapping neurophysiological and molecular profiles of heterogeneity and homogeneity in schizophrenia-bipolar disorder
260 _ _ |a Washington, DC [u.a.]
|c 2025
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763391953_1296
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The heterogeneity of psychotic disorders leads to instability in subjectively defined diagnoses. This study used a machine learning framework termed common orthogonal basis extraction (COBE) to decompose electroencephalography-based functional connectivity (FC) in patients with psychotic bipolar disorder (PBD), schizophrenia (SCZ), and schizoaffective disorder (SAD) into individualized and shared subspaces. The results demonstrated that individualized FCs captured disease heterogeneity and predicted symptom severity more accurately than raw FCs, while shared FCs revealed diagnosis-specific abnormalities and achieved an accuracy of 79.30% in differentiating PBD, SCZ, and SAD. Furthermore, molecular decoding implicated regionally selective serotonin systems and astrocytes in the neurobiological differences among disorders, suggesting disorder-specific pharmacological targets. Critically, these findings were replicated in an independent cohort, confirming the effectiveness of the COBE framework in mining neurophysiological and molecular profiles of schizophrenia-bipolar disorder. These findings advance mechanistic understanding of psychotic disorders and offer a promising avenue toward objective, clinically relevant tools for psychotic evaluation.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Guangying
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Genon, Sarah
|0 P:(DE-Juel1)161225
|b 2
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 3
|u fzj
700 1 _ |a He, Runyang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yi, Chanlin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dong, Debo
|0 P:(DE-Juel1)178872
|b 6
700 1 _ |a Yao, Dezhong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jiang, Lin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wu, Wei
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Xu, Peng
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1126/sciadv.adz0389
|g Vol. 11, no. 46, p. eadz0389
|0 PERI:(DE-600)2810933-8
|n 46
|p eadz0389
|t Science advances
|v 11
|y 2025
|x 2375-2548
856 4 _ |u https://juser.fz-juelich.de/record/1048163/files/sciadv.adz0389.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1048163
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a xupeng@uestc.edu.cn
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 1
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-14T07:33:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-14T07:33:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-05-14T07:33:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SCI ADV : 2022
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21