001048172 001__ 1048172
001048172 005__ 20251217202226.0
001048172 0247_ $$2doi$$a10.22541/essoar.174000855.50541566/v2
001048172 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04534
001048172 037__ $$aFZJ-2025-04534
001048172 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author
001048172 245__ $$aEmulation-based self-supervised SIF retrieval in the O2-A absorption band with HyPlant
001048172 260__ $$c2025
001048172 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765959174_22744
001048172 3367_ $$2ORCID$$aWORKING_PAPER
001048172 3367_ $$028$$2EndNote$$aElectronic Article
001048172 3367_ $$2DRIVER$$apreprint
001048172 3367_ $$2BibTeX$$aARTICLE
001048172 3367_ $$2DataCite$$aOutput Types/Working Paper
001048172 520__ $$aThe retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery requires accurate atmospheric compensation to correctly disentangle its small contribution to the at-sensor radiance from other confounding factors. In spectral fitting SIF retrieval approaches this compensation is estimated in a joint optimization of free variables when fitting the measured at-sensor signal. Due to the computational complexity of Radiative Transfer Models (RTMs) that satisfy the level of precision required for accurate SIF retrieval, fully joint estimations are practically inachievable with exact physical simulation. We present in this contribution an emulator-based spectral fitting method neural network (EmSFMNN) approach integrating RTM emulation and selfsupervised training for computationally efficient and accurate SIF retrieval in the O2-A absorption band of HyPlant imagery. In a validation study with in-situ top-of-canopy SIF measurements we find improved performance over traditional retrieval methods. Furthermore, we show that the model predicts plausible SIF emission in topographically variable terrain without scene-specific adaptations. Since EmSFMNN can be adapted to hyperspectral imaging sensors in a straightforward fashion, it may prove an interesting SIF retrieval method for other sensors on airborne and spaceborne platforms.
001048172 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001048172 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001048172 588__ $$aDataset connected to CrossRef
001048172 7001_ $$0P:(DE-HGF)0$$aPato, Miguel$$b1
001048172 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b2
001048172 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b3
001048172 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001048172 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001048172 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001048172 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001048172 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8$$ufzj
001048172 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9$$ufzj
001048172 773__ $$a10.22541/essoar.174000855.50541566/v2
001048172 8564_ $$uhttps://juser.fz-juelich.de/record/1048172/files/Buffat%20et%20al_Emulation-based%20self-supervised%20SIF%20retrieval%20in%20the%20O2-A%20absorption%20band%20with.pdf$$yOpenAccess
001048172 909CO $$ooai:juser.fz-juelich.de:1048172$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001048172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001048172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001048172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001048172 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001048172 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001048172 9141_ $$y2025
001048172 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048172 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001048172 920__ $$lyes
001048172 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001048172 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001048172 980__ $$apreprint
001048172 980__ $$aVDB
001048172 980__ $$aUNRESTRICTED
001048172 980__ $$aI:(DE-Juel1)IAS-8-20210421
001048172 980__ $$aI:(DE-Juel1)IBG-2-20101118
001048172 9801_ $$aFullTexts