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Abstract. We provide the first method allowing to retrieve spaceborne
SIF maps at 30 m ground resolution with a strong correlation (2 = 0.6)
to high-quality airborne estimates of sun-induced fluorescence (SIF)SIF
estimates can provide explanatory information for many tasks related
to agricultural management and physiological studies. While SIF prod-
ucts from airborne platforms are accurate and spatially well resolved,
the data acquisition of such products remains science-oriented and lim-
ited to temporally constrained campaigns. Spaceborne SIF products on
the other hand are available globally with often sufficient revisit times.
However, the spatial resolution of spaceborne SIF products is too small
for agricultural applications. In view of ESA’s upcoming FLEX mission
we develop a method for SIF retrieval in the O2-A band of hyperspec-
tral DESIS imagery to provide first insights for spaceborne SIF retrieval
at high spatial resolution. To this end, we train a simulation-based self-
supervised network with a novel perturbation based regularizer and test
performance improvements under additional supervised regularization of
atmospheric variable prediction. In a validation study with correspond-
ing HyPlant derived SIF estimates at 740nm we find that our model

reaches a mean absolute difference of 0.78 mW nm™sr~! m~2.

Keywords: Sun-induced fluorescence + Hyperspectral Sensors - DESIS

1 Introduction

The potential of sun-induced flurorescence (SIF) for agricultural management
and phenotyping tasks was recognized early in the development of retrieval algo-
rithms [41]. Since SIF is fuelled by a residual energy flux of photosynthetically
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active radiation (PAR) that is not consumed by processes related to the plant’s
photochemistry and thermal energy dissipation it provides a causal link between
radiance measurements and the photosynthetic status of plants [42,50,61,62].
Various studies have utilized this relationship as the theoretical basis for stress
detection and monitoring [1,12,14,49,68], the estimation of photosynthetic activ-
ity and gross primary productivity [10,58,59,69], crop monitoring and yield pre-
dictions [25,37,48,56] and disease monitoring [8,51] from SIF estimates derived
from remote sensing data at various spatial scales. Quantitative estimates of
SIF allow for more sensitive and causally founded physiological assessments com-
pared to purely reflectance based indices commonly used for such tasks. Different
studies have shown the increased explanatory power of SIF estimates measured
at canopy level in a range of tasks [12,39,45,65].

SIF retrieval methods for a variety of sensors have been developed as the
number of airborne and spaceborne sensors with sufficient spectral resolution
has increased [43]. However, no spaceborne sensor designed specifically for flu-
orescence retrieval has yet been operationalized. ESA’s Earth Explorer Mission
FLEX [16], planned to be launched in 2025, will be the first such instrument.
Spaceborne SIF estimates to this day are derived from data acquired by satellite
missions for atmospheric characterization (e.g., GOSAT [34], GOME [27,33],
SCIAMACHY [35], 0CO-2/3 [17,57], TROPOMI [26, 28], TanSAT [67]) as their
spectral resolution (SR) and signal-to-noise ratio (SNR) allow for SIF retrieval
from Fraunhofer lines [16,23,24]. However, the spatial resolution of these atmo-
spheric sensors (>4 km?) is insufficient for most agricultural applications. FLEX,
on the other hand, will provide radiance data with a pixel size of 300 m which
still imposes severe limits on its usability for a wide range of applications in
heterogeneous agricultural landscapes.

As an exploratory step towards spaceborne SIF retrieval at high spatial reso-
lution, we therefore propose a deep learning architecture and a loss formulation
for the first SIF retrieval from hyperspectral imagery of the DLR Earth Sens-
ing Imaging Spectrometer (DESIS). SIF retrieval from DESIS imagery has the
benefit of providing spaceborne SIF products at an unprecedented spatial reso-
lution of 30 m which principally allows for the targeted acquisition of auxiliary
validation data at high spatial resolution for the upcoming FLEX mission. How-
ever, the SR and SNR of DESIS are insufficient for consistent SIF retrieval with
current traditional retrieval methods leveraging data in the Os-A absorption
band [13,22,40] where the fluorescence signal contribution to the at-sensor sig-
nal has a local maximum. Airborne SIF retrieval with similar methods applied
to radiance data at lower SR has however been shown to yield consistent relative
SIF estimates [3]. As a solution, we extend the simulation-based self-supervised
deep learning approach of [5,7], called Spectral Fitting Method Neural Network
(SFMNN), originally developed with airborne hyperspectral imagery. As in other
self-supervised simulation-based learning schemes, this approach leverages the
implicit constraints of a differentiable simulator of the physical image genera-
tion in the loss [30,32] and primarily does not rely on labels for training. Further
regularization terms that enforce physical and physiological domain constraints
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allow this encoder-decoder architecture to decompose and reconstruct hyper-
spectral data in the spectral range around the Os-A absorption band.
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Fig.1. DESIS and HyPlant data. (a) RGB composite of a DESIS acquisition
(13/06/2023 14:37 CEST) and, in red, extent of spatially and temporally overlap-
ping HyPlant acquisitions (13/06/2023 14:11-14:38 CEST). (b) Top: Sample DESIS
at-sensor radiance spectra, Bottom: sample HyPlant at-sensor radiance spectra. Wout
denotes the spectral emulator domain. (Color figure online)

In this contribution we introduce regularization terms in the SFMNN frame-
work allowing consistent SIF retrieval in DESIS imagery despite its lower SNR
and SR. Firstly, we propose a perturbation based augmentation scheme to pro-
mote the decorrelation of the predicted SIF from other confounding variables
affecting the at-sensor signal. Secondly, we show that including ancillary atmo-
spheric data from DESIS L2A products by means of a secondary supervised
downstream learning task improves the performance of our model.

2 Data
2.1 DESIS Observation, Simulation and Emulation

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a hyperspectral imag-
ing sensor onboard the International Space Station (ISS) [38]. It measures at-
sensor radiance in 235 bands in the spectral range from 400nm to 1000 nm
with a nominal spectral sampling interval (SSI) of 2.55nm and a full width at
half maximum (FWHM) of 3.55 nm. The spatial dimensions of DESIS acquisi-
tions are fixed to 1024 x 1024 pixels with a nominal pixel width of 30 m. See
[2] for a complete description of the DESIS sensor, data products and associ-
ated uncertainties. We make use of a polynomial emulator formulation [46,47] to
reconstruct DESIS radiance spectra around the Os-A absorption band. We found
small domain shift errors with respect to smile-corrected L1B DESIS products
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(see Sect.4.1). For training, we assembled a data set of 96 DESIS data takes
(L1B and L2A in sensor geometry) matching either OCO-3 or HyPlant record-
ings [6]. The georegistration of DESIS SIF estimates was conducted with the
operationally provided DESIS L2A geolayers.

Table 1. Training (7rn.) and validation (Val.) data sets. Npx: number of covered
DESIS pixels, Nacq: number of DESIS acquisitions (with matching pixels, in the case
of data sets HyPlant and OCO-3). A complete account of the data set is available [6]

Data Set|Npx Nacq|Location Method|Type
HyPlant 10’196 (2020), 18’850 (2023)|4  |Jiilich (Germany)|[11] Val.
OCO-3 670 92 |Global [58] Val.
DESIS |100 x 10° 96 |Global — Trn.

2.2 HyPlant Campaigns 2020 and 2023

HyPlant is an airborne spectrometer system providing hyperspectral radiance
measurements with an SSI of 0.11 nm and a nominal FWHM of 0.25 nm [55]. It is
the airborne demonstrator version for FLEX [16] which is first spaceborne sensor
specifically designed for SIF retrieval. As a result, HyPlant measurements have
been used for SIF retrieval in yearly field campaigns since 2014 [18-21,52-54].
For this contribution, spatially overlapping acquisitions of DESIS and HyPlant
could be recorded on 13/06,/2023. Six HyPlant and two DESIS acquisitions were
acquired within small time intervals of 1-25 min at around 14:30 CEST (cf. Fig. 1
and Table 1). Additionally, we found close spatial matches between six HyPlant
and two DESIS acquisitions on 23/06/2020 in the same region. In this case the
HyPlant acquisitions were recorded at least an hour earlier than the DESIS
acquisitions (12:08 CEST). This unique disposition of spatially and temporally
matching spaceborne and airborne radiance measurements allowed us to compile
a comparative data set of georegistered HyPlant and DESIS SIF estimates. To
this end, we processed the HyPlant at-sensor radiance with the Spectral Fitting
Method (SFM) [11] to derive high-quality SIF estimates. The alignment of DESIS
and HyPlant SIF products involved downscaling (isotropic Gaussian smoothing
and spatial resampling) HyPlant SIF to DESIS resolution.

2.3 0OCO-3 SIF Estimates

OCO-3 is a spectrometer assembly originally designed for the retrieval of col-
umn carbon dioxide [17]. As DESIS, OCO-3 is located onboard the ISS. The
high SR of the radiance measurements around the Os-A absorption band of this
sensor allows for SIF retrieval in this spectral region similarly to earlier space-
borne sensors designed for the retrieval of atmospheric gas compositions [60].
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Since both OCO-3 and DESIS are on the ISS, there exists a set of overlapping
acquisitions with small time differences (<10 min). We have identified a set of
approximately 100 DESIS acquisitions that are partially covered by OCO-3 mea-
surements, exhibit a low ratio of cloud cover and are flagged to be of acceptable
quality. We make use of an OCO-3 SIF product of those acquisitions [15,44]
as a complementary performance validation of our DESIS SIF estimates. These
OCO-3 SIF estimates were compared to DESIS pixels in a 300 m radius around
the center of individual soundings.
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Fig. 2. Proposed network architecture. Data: gray blocks denote different data sources:
L1B smile-corrected DESIS L1B at-sensor radiance, L2A reflectance and atmospheric
variables provided in the DESIS L2A product, GEO geometrical variables from L1C
metadata and L2A geolayer: RAA (relative azimuth angle), TA (tilt angle), SZA (sun
zenith angle), hgna (digital elevation model). other: u denotes trainable sensor state
identifier and z1 the across-track pixel position. Network: variables (pra0, S, €, fra0)
predicted by dpx and (AOTs550, H2O) predicted by dpatcn as well as (AX, Ao) predicted
by ¢ are passed to the simulation layer implemented as the emulator E [46,47].

3 Architecture and Simulation-Based Loss
3.1 Architecture

The SIF retrieval method for DESIS imagery presented in this work is based
on the Spectral Fitting Method Neural Network (SFMNN) [5,7]. This network
implements in an encoder-decoder type architecture to fit parameters p; of a sim-
ulation model of observational at-sensor radiance data. The simulation model
parameterizes the physical signal generation as a function of surface, atmo-
spheric, sensor and geometrical variables. As a result, SIF retrieval is formulated
as a feature optimization for optimal spectral decomposition and reconstruction.
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In order to constrain the solution space, the output dimensionality of the predic-
tion of the simulation parameters is variable (Fig.2). While surface parameters
are allowed to vary in a pixelwise fashion, the atmospheric parameters are con-
strained to a single scalar value for pixels in a single input patch, i.e., within
the same spatial neighbourhood. This is motivated by the large spatial auto-
correlation distance of the atmospheric variables which is typically larger than
the patches of 30 x 30 DESIS pixels (900 x 900 m) used during training. Equally,
simulated sensor miscalibration only varies along the across-track dimension.
We implement an encoder, decoders dpx and dpagcn for the surface and atmo-
spheric variables and a module ¢ for the sensor variables. The module archi-
tecture consists of stacked multi-layer perceptrons (MLPs) with residual links
(see [7] for a detailed architecture description). The simulation model imple-
mented here exhibits three major differences with respect to [5,7] that allow the
application of SEFMNN in an adapted form to DESIS data (explained below).

Emulator. We replace the approximate simulation model of [5,7] with an emu-
lator of a simulations of DESIS-like radiance spectra around the Os-A absorption
band. To this end, we adopt a simulation tool and emulation set-up introduced
by Pato et al. [46,47] who show that a polynomial emulator of 4" degree yields
an approximation error that is significantly smaller than typical at-sensor flu-
orescence in a DESIS-like configuration. Polynomial emulators are not widely
used for radiance emulation in remote sensing (e.g. [63,64]). In our specific case,
only the small spectral range W, =[740 - 780] nm around the O2-A band must
be covered, however, such that a model with small complexity is able to meet the
precision requirements. The polynomial nature of the emulator is advantageous
since (i) it can be integrated easily in a feed-forward neural network architecture
as a fixed linear layer and (ii) it is computationally efficient such that training
and prediction are not significantly affected by it.

Residual Fluorescence Estimation. SFMNN is a completely self-supervised
approach that does not require any labelled data to be trained to a set of hyper-
spectral imagery. Preliminary tests with a plain SFMNN approach on DESIS
data did not provide SIF estimates with useful sensitivity to the HyPlant and
OCO-3 validation data, however. The most likely cause for this is the low SR of
DESIS data, especially in comparison to the HyPlant data on which SFMNN was
originally developed. We therefore adopt a modification to SEMNN whereby the
fluorescence f is not estimated directly from radiance data. Instead, a residual
Af to an initial guess finix with large uncertainty is predicted by a dedicated
module from L1C and L2A data (cf. Fig.2) such that we can interpret

fra0 = finit + Af, (1)

as the model’s SIF estimate. A similar approach has notably be implemented
by Brodrick et al. [4] to improve a low-quality atmospheric radiative transfer
model. fini¢ here denotes an initial estimate of the fluorescence emission that
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we gain from a supervised predictor directly trained on simulated DESIS data.
While the simulation-trained model alone yields noisy predictions with subpar
performance (cf. Fig.4), we find that its combination with the self-supervised
principles of SFMNN results in significantly improved prediction accuracy.

Sensor State. Miscalibration of a hyperspectral sensor can be expressed
in terms of changes to a Gaussian approximation of the instrument spectral
response function (ISRF) in each spatio-spectral pixel. Commonly, such miscal-
ibrations are parameterized with shifts of its standard deviation Ao and shifts
of its center wavelength AX. Hyperspectral sensors can suffer from changing A\
and Ao due to mechanical and environmental stresses that change the ISRF

(a) AL [mW nm™ s~ m?] (b)
0.0 0.5 1.0 1.5 2.0 25 3.0

[ 140
35

30 120

[%]

x 104

— with fra0 [ 100
— w/o fuo

20

[pm=lsr~'m2]

Pixels
=g

AL/Lpgsis
5

80

Lpgsis

[ 60

o o

0.00 001 002 003 004 005 0.06 74'1_5 75'[] 7(;5 7(';[] 7(}5 7%0 7'75
AL/Lpgsis A [nm]

Fig. 3. (a) Relative and absolute reconstruction error of best performing model con-
figuration over all DESIS acquisitions. (b) Red/Pink: Spectrally explicit error distri-
bution in the DESIS acquisition matching the OCO-3 validation data (Fig. 1), light
colors denote the 25 - 75 percentiles. Blue/Green: Sample reconstruction (blue) of a
single spectral DESIS observation (green) matching HyPlant (2023) data (Color figure
online).

and must be addressed operationally by periodical recalibration. The issue of
mismatching calibrations may be significant due to (i) DESIS’ overall low SR
and (ii) a subpar smile-correction of L1C in the Og-A band. In order to alleviate
this issue the shifts Ao and A\ are fitted as a function ¢ of acquisition-specific
identifiers v such that sensor drifts, processing changes and artefacts may be
accounted for. In order to prevent a too large degree of freedom that could affect
the SIF prediction, we implement a module g as a decoder module with only
u and sensor position z as inputs such that (i) it is independent of any other
input than the identifier u, (ii) multiple acquisitions may have the same iden-
tifier (acquisitions of the same date have the same identifier u) and (iii) only
across-track variability of the shifts are allowed as is realistic for a push-broom
sensor (see Fig. 2).

3.2 Loss Formulation

We propose a simulation-based loss ¢ = les + £ + lay + £y + £ Where e
evaluates the reconstruction residuals of the model with respect to the obser-
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Table 2. Dimensions €in, dpx, dpatch, ¢ and Af (cf. Fig.2). Modules consist of stacked
MLPs. Each element in Dim. denotes the dimension of individual perceptrons in a single
MLP, Reps. the number of perceptrons in a single MLP (all with the same dimension
reported in Dim.) and D, the dropout rate of the output of each MLP. For a detailed
architecture description see [7].

Module Parameters

Encoder eiy Dim. 1000, 500, 200, 100, 50, 50, 50, 30)
2,3,3,3,3,3,3,3)

0.05, 0.01, 0.01, 0.01, 0.005, 0.001)
Decoders dpx, dpatch and g/ Dim. 100, 50, 50, 50)

(
Reps. (
(
(
Reps. (3,.2,22)
(
(
(
(

D,

D, 0.001, 0.001, 0.0)
Af Dim. 1000, 200, 100, 50, 50, 50)
Reps. 2,3,3,3,31)

D, 0.05, 0.005, 0.001)

vational input, ¢,, and £af ensure that the network matches prior knowledge,
{x ensures the physiological plausibility of the SIF estimates and ¢. denotes a
perturbation based regularization that enhances the decorrelation between pre-
dicted variables by means of a physically accurate augmentation. Self-supervised
learning with radiance observations is addressed by adopting the methodology of
[5,7], where the reconstructed signal is compared to the observation similarly to
other self-supervised methods such as masked auto-encoders [29,31]. A squared
residual over the whole spectrum as well as a weighted residual boosting the
loss in spectral regions with high average fluorescence contributions punish the
network for not reproducing the at-sensor observations. This is implemented by

e (18) = ((1-1)7) + 5 <Zfi< (A))2>, @)

x

where (...)x , denotes the batchwise mean over the spatial and spectral dimen-
sion, and where L and L denote the observations and emulated predictions in the
spectral range Wo,t. The weighting w) is resampled from the weights originally
proposed in [5,7] for the specific sensor characterization of the DESIS sensor.
Furthermore, we also adopt the selective gradient backpropagation of the second
term which is set to only affect the fluorescence prediction f740.

The inclusion of prior information on atmospheric variables and the SIF
emission are implemented as regularization terms

’ ~ \2 A 2
w = Yo Pk —Pr)° and Loy =7ay (f - finit) (3)
kel

where finit denotes the prediction of the supervised SIF predictor and where
= {H30, AOT550}. We denote by HoO the water vapour density and by
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AOT550 the aerosol optical thickness at 550 nm, which are derived operationally
and distributed with DESIS L2A products. Thus, ¢, introduces a supervised
regression training of ancillary data from DESIS products as a secondary task.
As an alternative strategy, we test in Sect. 4.3 a set-up where the ancillary data
is passed directly to the input and the emulator for training and prediction.
Accordingly, our model does not provide predictions of the atmospheric param-
eters (HoO, AOT550) in this latter variant.

The SIF estimate fi,it, which we gain from a predictor trained on simulated
DESIS data, is included in the loss parallelly to ¢,,. This effectively controls
the range of deviation that the residual module Af is allowed to introduce.
Additionally, the fluorescence estimate of the residual module is controlled by
the constraint X

ty =y £ 6 (NDVI(L) < 7) (4)

to ensure vanishing SIF predictions in pixels without vegetation, i.e., with small
NDVI [5,7]. We fix 7 = 0.15 in all experiments.

Finally, we leverage the compact physical description of the generation of
at-sensor radiance given by the emulator to derive a perturbation based aug-
mentation for regularization that we will refer to as consistency reqularization.

0.25 0.50 0.75 05 08 11 14 1.7 01234567 01234567
NDVI AL/Lpgsis  [%) fra0 i

Fig. 4. Overview of an image excerpt of a DESIS acquisition matching HyPlant (2023)
validation data (Fig. 3). Left to right: RGB composite, NDVI derived from L2A, relative

reconstruction error, fluorescence estimate fr40, initial fluorescence estimate fiig.

We denote by g,,; the prediction of emulator input variables p;. Consequently,
gp, are approximate partial inversions of the emulator e. Perturbations of the
input radiance L by 0L affect the predictor gy and vice-versa perturbations 0 f

of the predicted fluorescence f affect the emulator:
95(L+06L) = f+6f and e(f +6f, p;) = Le +0Le (5)

where the spectral range W, of the emulator output L. is smaller than the
range of the observational DESIS spectrum L due to a practical limitation of
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the emulator design. We can simulate new approximate samples by generating
radiance perturbations §L.. To do this, we write

(L+6L)(A\) ~ Ls; = L(A) + 6Le 6 (A € Wout) , (6)
where JL, = e(f—i— Sf.pj) — e(f, D).

Neglecting any simulation errors and inaccuracies due to the perturbation imple-
mentation of Lf ¢ an optimal solution should yield

g (Lss) — f=06f and g,, (Lss) = pj, (7)

since all changes in the perturbed observation can be attributed to a change in
fluorescence in this case. We thus formulate the regularization as

(L. F5) = Boge | (05 (Lhy) = (F400) + (o, (57) =02)7] 9

where F is the fluorescence range over which e is defined. We implement the
expectation as a mean over a uniformly sampled set of § f in each training forward
pass.
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Fig. 5. Conditional 2d-histogram of DESIS SIF estimates of the best performing run
(ye = 5 x 10%, yaoT = 100) compared to HyPlant (2023), HyPlant (2020) and OCO-3
validation data sets Table 1, red dashed lines denote the 10, 25, 75 and 90 percentiles.

4 Results
4.1 Reconstruction Performance and Validation

The network must reconstruct observed spectra with high accuracy. The model
trained on all DESIS acquisitions with matching HyPlant or OCO-3 SIF products
(Table 1) with the proposed loss (with v¢ =1, yar =5, ya,0 = 1 and yny = 10
fixed during preliminary experimental runs and yaor = 100 and 7, = 5 x 103
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being the best configuration) reaches a mean relative reconstruction error of 1.6
% (Fig.3 (a)). The spectral variation of the reconstruction error is small (Fig. 3
(b)) which evidences the model’s capacity to plausible signal generation across
the spectral domain. We equally observe that the reconstruction error is reduced
under inclusion of f749 compared to reconstructions where we fixed fr49 = 0.

In Fig.4 we show an exemplary result. The prediction of fr49 exhibits a
reduced noise level compared to fiil' and correlates with the distribution of
agricultural fields. In order to assess the performance quantitatively we com-
pare DESIS SIF estimates to matching HyPlant and OCO-3 SIF estimates
(Table 1). Since existing SIF retrieval methods are not adapted to DESIS data
(cf. Sect. 3) we rely on these estimates as ground truth. The same configuration as
above yields a mean absolute difference (A fr40)pyp23 = 0.78 mWnm ™! st~ m—2
(smaller is better) and a coefficient of determination 17 poy = 0.6 (larger is bet-
ter) in the HyPlant (2023) data set. The DESIS estimates perform worse in a
comparison with HyPlant (2020) data ((A fr40)myp20 = 0.86 mWnm ™! sr=! m—2
and T%IYPQO = —0.01) due to a large overestimation of our approach. This is
expected since the data was recorded closer to solar noon when the diurnal course
of SIF peaks [9,66]. Finally, we find (A fz40)ocosz = 0.58 mW nm~!sr=* m~2 and
13003 = 0.2 compared to OCO-3 data (cf. Fig.5).

We evaluated the consistency regularization and the inclusion of ancillary
data on the SIF prediction. We only validated with respect to the HyPlant (2023)
and OCO-3 data sets as the acquisition time difference of HyPlant (2020) would
have introduced large biases. In addition to the metrics above, we report (A f740)
and 7?2 for bias corrected data to differentiate between performance increases due
to bias reduction and due to increased explanation of label variance, i.e.,

R? =17 (n ° frao,no f740) and (Afra0) = (A(no fra)), )

where n(z) = x — (z). Furthermore, since there is an empirical correlation
between SIF and reflectance due to common causal drivers, a stronger validation
consists in conditioning the model’s performance on reflectance p. Subsequently,
we define the reflectance constrained explained variation

<R2>A = |P|71 Z RQ(APmo)v AP780 =p (f740 ‘ fra0, |p - p780| < dp)
prso€P

(10)
where dp = 0.02 and exclusively reflectance in a single DESIS band (prs0) is
considered. Only the HyPlant (2023) data set is large enough to calculate <R2> 4
confidently, however. We focus on the reflectance at 780 nm since the influence of
SIF on DESIS L2A reflectances at 780 nm is negligible while p7gg also is strongly
correlated to vegetation cover. Similarly, we characterize A, ., by the slope s4
and bias by of a linear model fitted to it (cf. Fig.6 (¢)). Since we expect this bias
to vanish for perfect predictions we calculate the mean reflectance dependent
bias MAE, = (b4) as an additional performance metric.
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Fig.6. (a) and (b): performance of the model trained with varying v. as compared
to HyPlant (2023) and OCO-3 SIF. (c): Reflectance constrained metrics for the case
yaor = 0, 7. = 5 x 102, light blue and light red colors denote the uncertainty of the
least-squares fit to gain s and b, (d): metrics under varying 7. in HyPlant (2023) data.
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Fig. 7. Model performance with respect to HyPlant (2023) SIF in (a) and (c) and
OCO-3 SIF in (b) and (d) under variable yaor. Light colors indicate . = 0, dark
colors indicate . = 5 x 103. Horizontal lines indicate the performance of the model
runs without ancillary data in Sect. 4.2.
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4.2 Consistency Regularization Weighting ~.

In order to evaluate the impact of the consistency regularization ¢, on DESIS
SIF, we perform a grid search over 7. (Fig. 6 (a) and (b)) without including ¢,, in
the training loss. In the OCO-3 data set the inclusion of /. at all tested weights ~,
outperforms the case 7. = 0 in terms of (A fr40) (smaller is better) and generally
also in terms of R? (larger is better) (Figs.6 (a) and (b)). With HyPlant (2023)
we find only a localized performance optimum at . ~ 5x 10% in terms of (A fr49)
and 2. We show in Fig. 6 (c) that we find particularly strong overestimation at
prso > 0.5 Improved performance under ¢, in HyPlant, however, can be seen in
terms of MAE;, and <R2>A (Fig.6 (d)). Specifically, we find <R2>A > 0 only if
the consistency regularization is applied.

4.3 Inclusion of Ancillary Data

To assess the impact of including ancillary data in the SIF retrieval, we con-
duct a grid search over yaor (while fixing vg,0 = 1). First, we establish the
performance difference between using the proposed regularization scheme in
Eq. (3) and providing the data directly to the input and the emulator. We
denote this configuration by yaor = 0 in Fig.7. We find decreased r? and
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Fig. 8. Reflectance constrained metrics for yaor. Light colors indicate model runs
with 7. = 0, dark colors indicate runs with 7. = 5 x 10%. Horizontal lines denote the
reflectance constrained performance results of the model runs without ancillary data
in Fig.6 (d). (b): Reflectance constrained metrics for yaor = 100, 7. = 5 X 10%. Light
blue and light red denote the uncertainty of the least-squares fit to gain s and b. (Color
figure online)

(A fr40) performance in all HyPlant configurations (Fig.7) compared to cases
~vaor > 0. Equally, decreased r? performance can be observed in the compar-
ison with OCO-3 SIF estimates. Secondly, we can observe that runs with high
yaoT approximately reach the same SIF prediction performance as model runs
without any ancillary data from Sect.4.2 (Fig.7 (a) and (c)). Finally, similarly
to the results in Sect. 4.2, we can observe a performance increase in the HyPlant
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(2023) and OCO-3 datasets when using .. This is observable in 7%, (A f740),
MAE,; and (R?) 4 (Fig.8 (a)). In particular, the previously observed large over-
estimation at high prgo is reduced (Fig. 8 (b)).

5 Discussion
5.1 Decorrelating Impact of Consistency Regularization

The introduction of ¢, proved beneficial to the overall SIF retrieval performance.
In a study of the performance of <R2> 4» we isolated the model performance inde-
pendent of the empirical correlation between SIF and prsg. We found improved
performance in terms of (R?) , under the inclusion of £, (Fig.6 (c) and (d))
indicating that the consistency regularization ¢, has the intended effect of decor-
relating the target signal from confounding factors. The weighting +. has to be
chosen carefully, however. Increased MAE, at large 7. may have been due (i)
to imperfect sample generation in /. introducing a domain gap between the
observations and the augmentations and (ii) a trade-off between reconstruction
accuracy and minimization of /..

5.2 Inclusion of Ancillary Data Sources

In order to reduce the retrieval problem’s ill-posedness we have proposed the
use of a regularization that implements the supervised learning of atmospheric
emulator prediction variables with ancillary data sources as labels. The regular-
ization formulates a secondary downstream task in addition to the decomposition
of the spectral observations into constituent variables. Importantly, we could see
improved SIF retrieval performance with this regularization in terms of a reduced
reflectance dependent bias MAE, when used with £.. As systematic integration
of ancillary data is also planned for the FLEX mission by operating it in tandem
with Sentinel-3 [16] the retrieval approach explored in this contribution could
benefit similar SIF retrieval approaches on FLEX imagery.

6 Conclusion

In this contribution we have presented a deep learning architecture for SIF
retrieval from DESIS imagery. This work is the first to use hyperspectral DESIS
data for SIF retrieval. A unique data set of spatially and temporally closely
matching HyPlant SIF estimates has allowed us to perform a detailed valida-
tion study of the methodology proposed in this work. The good performance
of our model with respect to these high-quality SIF estimates ((Afr40) =
0.78 mWnm~tsr~!m~2, 2 = 0.6) supports our finding that it is possible to
derive SIF from DESIS products. Further comparison with a data set of glob-
ally distributed OCO-3 SIF estimates could establish the sensitivity of our SIF
product in a wider variety of observational and ground conditions and may form
the basis for an operational SIF product from DESIS data.
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To achieve the good SIF prediction performance, we have extended a self-
supervised simulation-based deep learning approach [5,7]. Several changes to
the loss formulation were necessary to address the lower SR and SNR, of DESIS
imagery. Most importantly, we have (i) introduced a perturbation based aug-
mentation to improve signal decorrelation and (ii) tested the inclusion of ancil-
lary data by formulating a secondary supervised downstream task. We could
show that both the perturbation based augmentation and the supervised down-
stream task formulations improved SIF retrieval performance when comparing
both with HyPlant and OCO-3 SIF products. We furthermore could observe
improved decorrelation of DESIS SIF from p7ggp when making use of the augmen-
tation during training. Since this perturbation based regularization strategy is
not restricted to remote sensing data it may be implemented in other simulation-
based deep learning applications to decrease the influence of confounding factors.
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