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Abstract. We provide the first method allowing to retrieve spaceborne 
SIF maps at 30 m ground resolution with a strong correlation (r2 = 0.6) 
to high-quality airborne estimates of sun-induced fluorescence (SIF) ̇SIF 
estimates can provide explanatory information for many tasks related 
to agricultural management and physiological studies. While SIF prod-
ucts from airborne platforms are accurate and spatially well resolved, 
the data acquisition of such products remains science-oriented and lim-
ited to temporally constrained campaigns. Spaceborne SIF products on 
the other hand are available globally with often sufficient revisit times. 
However, the spatial resolution of spaceborne SIF products is too small 
for agricultural applications. In view of ESA’s upcoming FLEX mission 
we develop a method for SIF retrieval in the O2-A band of hyperspec-
tral DESIS imagery to provide first insights for spaceborne SIF retrieval 
at high spatial resolution. To this end, we train a simulation-based self-
supervised network with a novel perturbation based regularizer and test 
performance improvements under additional supervised regularization of 
atmospheric variable prediction. In a validation study with correspond-
ing HyPlant derived SIF estimates at 740 nm we find that our model 
reaches a mean absolute difference of 0.78 mW nm−1 sr−1 m−2 . 
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1 Introduction 

The potential of sun-induced flurorescence (SIF) for agricultural management 
and phenotyping tasks was recognized early in the development of retrieval algo-
rithms [ 41]. Since SIF is fuelled by a residual energy flux of photosynthetically 
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active radiation (PAR) that is not consumed by processes related to the plant’s 
photochemistry and thermal energy dissipation it provides a causal link between 
radiance measurements and the photosynthetic status of plants [ 42,50,61,62]. 
Various studies have utilized this relationship as the theoretical basis for stress 
detection and monitoring [ 1,12,14,49,68], the estimation of photosynthetic activ-
ity and gross primary productivity [ 10,58,59,69], crop monitoring and yield pre-
dictions [ 25,37,48,56] and disease monitoring [ 8,51] from SIF estimates derived 
from remote sensing data at various spatial scales. Quantitative estimates of 
SIF allow for more sensitive and causally founded physiological assessments com-
pared to purely reflectance based indices commonly used for such tasks. Different 
studies have shown the increased explanatory power of SIF estimates measured 
at canopy level in a range of tasks [ 12,39,45,65]. 

SIF retrieval methods for a variety of sensors have been developed as the 
number of airborne and spaceborne sensors with sufficient spectral resolution 
has increased [ 43]. However, no spaceborne sensor designed specifically for flu-
orescence retrieval has yet been operationalized. ESA’s Earth Explorer Mission 
FLEX [ 16], planned to be launched in 2025, will be the first such instrument. 
Spaceborne SIF estimates to this day are derived from data acquired by satellite 
missions for atmospheric characterization (e.g ., GOSAT [ 34], GOME [ 27,33], 
SCIAMACHY [ 35], OCO-2/3 [ 17,57], TROPOMI [ 26,28], TanSAT [ 67]) as their 
spectral resolution (SR) and signal-to-noise ratio (SNR) allow for SIF retrieval 
from Fraunhofer lines [ 16,23,24]. However, the spatial resolution of these atmo-
spheric sensors (>4 km2) is insufficient for most agricultural applications. FLEX, 
on the other hand, will provide radiance data with a pixel size of 300 m which 
still imposes severe limits on its usability for a wide range of applications in 
heterogeneous agricultural landscapes. 

As an exploratory step towards spaceborne SIF retrieval at high spatial reso-
lution, we therefore propose a deep learning architecture and a loss formulation 
for the first SIF retrieval from hyperspectral imagery of the DLR Earth Sens-
ing Imaging Spectrometer (DESIS). SIF retrieval from DESIS imagery has the 
benefit of providing spaceborne SIF products at an unprecedented spatial reso-
lution of 30 m which principally allows for the targeted acquisition of auxiliary 
validation data at high spatial resolution for the upcoming FLEX mission. How-
ever, the SR and SNR of DESIS are insufficient for consistent SIF retrieval with 
current traditional retrieval methods leveraging data in the O2-A absorption 
band [ 13,22,40] where the fluorescence signal contribution to the at-sensor sig-
nal has a local maximum. Airborne SIF retrieval with similar methods applied 
to radiance data at lower SR has however been shown to yield consistent relative 
SIF estimates [ 3]. As a solution, we extend the simulation-based self-supervised 
deep learning approach of [ 5, 7], called Spectral Fitting Method Neural Network 
(SFMNN), originally developed with airborne hyperspectral imagery. As in other 
self-supervised simulation-based learning schemes, this approach leverages the 
implicit constraints of a differentiable simulator of the physical image genera-
tion in the loss [ 30,32] and primarily does not rely on labels for training. Further 
regularization terms that enforce physical and physiological domain constraints
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allow this encoder-decoder architecture to decompose and reconstruct hyper-
spectral data in the spectral range around the O2-A absorption band. 

Fig. 1. DESIS and HyPlant data. (a) RGB composite of a DESIS acquisition 
(13/06/2023 14:37 CEST) and, in red, extent of spatially and temporally overlap-
ping HyPlant acquisitions (13/06/2023 14:11–14:38 CEST). (b) Top: Sample DESIS 
at-sensor radiance spectra, Bottom: sample HyPlant at-sensor radiance spectra. Wout 

denotes the spectral emulator domain. (Color figure online) 

In this contribution we introduce regularization terms in the SFMNN frame-
work allowing consistent SIF retrieval in DESIS imagery despite its lower SNR 
and SR. Firstly, we propose a perturbation based augmentation scheme to pro-
mote the decorrelation of the predicted SIF from other confounding variables 
affecting the at-sensor signal. Secondly, we show that including ancillary atmo-
spheric data from DESIS L2A products by means of a secondary supervised 
downstream learning task improves the performance of our model. 

2 Data 

2.1 DESIS Observation, Simulation and Emulation 

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a hyperspectral imag-
ing sensor onboard the International Space Station (ISS) [ 38]. It measures at-
sensor radiance in 235 bands in the spectral range from 400 nm to 1000 nm 
with a nominal spectral sampling interval (SSI) of 2.55 nm and a full width at 
half maximum (FWHM) of 3.55 nm. The spatial dimensions of DESIS acquisi-
tions are fixed to 1024 × 1024 pixels with a nominal pixel width of 30 m. See 
[ 2] for a complete description of the DESIS sensor, data products and associ-
ated uncertainties. We make use of a polynomial emulator formulation [ 46,47] to  
reconstruct DESIS radiance spectra around the O2-A absorption band. We found 
small domain shift errors with respect to smile-corrected L1B DESIS products
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(see Sect. 4.1). For training, we assembled a data set of 96 DESIS data takes 
(L1B and L2A in sensor geometry) matching either OCO-3 or HyPlant record-
ings [ 6]. The georegistration of DESIS SIF estimates was conducted with the 
operationally provided DESIS L2A geolayers. 

Table 1. Training (Trn.) and validation (Val.) data sets.  Npx: number of covered 
DESIS pixels, Nacq: number of DESIS acquisitions (with matching pixels, in the case 
of data sets HyPlant and OCO-3). A complete account of the data set is available [ 6] 

Data Set Npx Nacq Location Method Type 
HyPlant 10’196 (2020), 18’850 (2023) 4 Jülich (Germany) [11] Val. 
OCO-3 670 92 Global [58] Val. 
DESIS 100 × 106 96 Global – Trn. 

2.2 HyPlant Campaigns 2020 and 2023 

HyPlant is an airborne spectrometer system providing hyperspectral radiance 
measurements with an SSI of 0.11 nm and a nominal FWHM of 0.25 nm [ 55]. It is 
the airborne demonstrator version for FLEX [ 16] which is first spaceborne sensor 
specifically designed for SIF retrieval. As a result, HyPlant measurements have 
been used for SIF retrieval in yearly field campaigns since 2014 [ 18– 21,52– 54]. 
For this contribution, spatially overlapping acquisitions of DESIS and HyPlant 
could be recorded on 13/06/2023. Six HyPlant and two DESIS acquisitions were 
acquired within small time intervals of 1–25 min at around 14:30 CEST (cf. Fig. 1 
and Table 1). Additionally, we found close spatial matches between six HyPlant 
and two DESIS acquisitions on 23/06/2020 in the same region. In this case the 
HyPlant acquisitions were recorded at least an hour earlier than the DESIS 
acquisitions (12:08 CEST). This unique disposition of spatially and temporally 
matching spaceborne and airborne radiance measurements allowed us to compile 
a comparative data set of georegistered HyPlant and DESIS SIF estimates. To 
this end, we processed the HyPlant at-sensor radiance with the Spectral Fitting 
Method (SFM) [ 11] to derive high-quality SIF estimates. The alignment of DESIS 
and HyPlant SIF products involved downscaling (isotropic Gaussian smoothing 
and spatial resampling) HyPlant SIF to DESIS resolution. 

2.3 OCO-3 SIF Estimates 

OCO-3 is a spectrometer assembly originally designed for the retrieval of col-
umn carbon dioxide [ 17]. As DESIS, OCO-3 is located onboard the ISS. The 
high SR of the radiance measurements around the O2-A absorption band of this 
sensor allows for SIF retrieval in this spectral region similarly to earlier space-
borne sensors designed for the retrieval of atmospheric gas compositions [ 60].
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Since both OCO-3 and DESIS are on the ISS, there exists a set of overlapping 
acquisitions with small time differences (<10 min). We have identified a set of 
approximately 100 DESIS acquisitions that are partially covered by OCO-3 mea-
surements, exhibit a low ratio of cloud cover and are flagged to be of acceptable 
quality. We make use of an OCO-3 SIF product of those acquisitions [ 15,44] 
as a complementary performance validation of our DESIS SIF estimates. These 
OCO-3 SIF estimates were compared to DESIS pixels in a 300 m radius around 
the center of individual soundings. 

Fig. 2. Proposed network architecture. Data: gray blocks denote different data sources: 
L1B smile-corrected DESIS L1B at-sensor radiance, L2A reflectance and atmospheric 
variables provided in the DESIS L2A product, GEO geometrical variables from L1C 
metadata and L2A geolayer: RAA (relative azimuth angle), TA (tilt angle), SZA (sun 
zenith angle), hgnd (digital elevation model). other : u denotes trainable sensor state 
identifier and x1 the across-track pixel position. Network: variables (ρ740, s, e, f740) 
predicted by dpx and (AOT550, H2O) predicted by dpatch as well as (Δλ, Δσ) predicted  
by q are passed to the simulation layer implemented as the emulator E [46,47]. 

3 Architecture and Simulation-Based Loss 

3.1 Architecture 

The SIF retrieval method for DESIS imagery presented in this work is based 
on the Spectral Fitting Method Neural Network (SFMNN) [ 5, 7]. This network 
implements in an encoder-decoder type architecture to fit parameters pj of a sim-
ulation model of observational at-sensor radiance data. The simulation model 
parameterizes the physical signal generation as a function of surface, atmo-
spheric, sensor and geometrical variables. As a result, SIF retrieval is formulated 
as a feature optimization for optimal spectral decomposition and reconstruction.
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In order to constrain the solution space, the output dimensionality of the predic-
tion of the simulation parameters is variable (Fig. 2). While surface parameters 
are allowed to vary in a pixelwise fashion, the atmospheric parameters are con-
strained to a single scalar value for pixels in a single input patch, i.e., within 
the same spatial neighbourhood. This is motivated by the large spatial auto-
correlation distance of the atmospheric variables which is typically larger than 
the patches of 30 × 30 DESIS pixels (900 × 900 m) used during training. Equally, 
simulated sensor miscalibration only varies along the across-track dimension. 

We implement an encoder, decoders dpx and dpatch for the surface and atmo-
spheric variables and a module q for the sensor variables. The module archi-
tecture consists of stacked multi-layer perceptrons (MLPs) with residual links 
(see [ 7] for a detailed architecture description). The simulation model imple-
mented here exhibits three major differences with respect to [ 5, 7] that allow the 
application of SFMNN in an adapted form to DESIS data (explained below). 

Emulator. We replace the approximate simulation model of [ 5, 7] with an emu-
lator of a simulations of DESIS-like radiance spectra around the O2-A absorption 
band. To this end, we adopt a simulation tool and emulation set-up introduced 
by Pato et al . [  46,47] who show that a polynomial emulator of 4th degree yields 
an approximation error that is significantly smaller than typical at-sensor flu-
orescence in a DESIS-like configuration. Polynomial emulators are not widely 
used for radiance emulation in remote sensing (e.g . [  63,64]). In our specific case, 
only the small spectral range Wout =[740 - 780] nm around the O2-A band must 
be covered, however, such that a model with small complexity is able to meet the 
precision requirements. The polynomial nature of the emulator is advantageous 
since (i) it can be integrated easily in a feed-forward neural network architecture 
as a fixed linear layer and (ii) it is computationally efficient such that training 
and prediction are not significantly affected by it. 

Residual Fluorescence Estimation. SFMNN is a completely self-supervised 
approach that does not require any labelled data to be trained to a set of hyper-
spectral imagery. Preliminary tests with a plain SFMNN approach on DESIS 
data did not provide SIF estimates with useful sensitivity to the HyPlant and 
OCO-3 validation data, however. The most likely cause for this is the low SR of 
DESIS data, especially in comparison to the HyPlant data on which SFMNN was 
originally developed. We therefore adopt a modification to SFMNN whereby the 
fluorescence f is not estimated directly from radiance data. Instead, a residual 
Δf to an initial guess finit with large uncertainty is predicted by a dedicated 
module from L1C and L2A data (cf. Fig. 2) such that we can interpret 

f740 = finit + Δf, (1) 

as the model’s SIF estimate. A similar approach has notably be implemented 
by Brodrick et al . [  4] to improve a low-quality atmospheric radiative transfer 
model. finit here denotes an initial estimate of the fluorescence emission that
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we gain from a supervised predictor directly trained on simulated DESIS data. 
While the simulation-trained model alone yields noisy predictions with subpar 
performance (cf. Fig. 4), we find that its combination with the self-supervised 
principles of SFMNN results in significantly improved prediction accuracy. 

Sensor State. Miscalibration of a hyperspectral sensor can be expressed 
in terms of changes to a Gaussian approximation of the instrument spectral 
response function (ISRF) in each spatio-spectral pixel. Commonly, such miscal-
ibrations are parameterized with shifts of its standard deviation Δσ and shifts 
of its center wavelength Δλ. Hyperspectral sensors can suffer from changing Δλ 
and Δσ due to mechanical and environmental stresses that change the ISRF 

Fig. 3. (a) Relative and absolute reconstruction error of best performing model con-
figuration over all DESIS acquisitions. (b) Red/Pink: Spectrally explicit error distri-
bution in the DESIS acquisition matching the OCO-3 validation data (Fig. 1), light 
colors denote the 25 - 75 percentiles. Blue/Green: Sample reconstruction (blue) of a 
single spectral DESIS observation (green) matching HyPlant (2023) data (Color figure 
online). 

and must be addressed operationally by periodical recalibration. The issue of 
mismatching calibrations may be significant due to (i) DESIS’ overall low SR 
and (ii) a subpar smile-correction of L1C in the O2-A band. In order to alleviate 
this issue the shifts Δσ and Δλ are fitted as a function q of acquisition-specific 
identifiers u such that sensor drifts, processing changes and artefacts may be 
accounted for. In order to prevent a too large degree of freedom that could affect 
the SIF prediction, we implement a module q as a decoder module with only 
u and sensor position x as inputs such that (i) it is independent of any other 
input than the identifier u, (ii) multiple acquisitions may have the same iden-
tifier (acquisitions of the same date have the same identifier u) and (iii) only 
across-track variability of the shifts are allowed as is realistic for a push-broom 
sensor (see Fig. 2). 

3.2 Loss Formulation 

We propose a simulation-based loss � = �res + �m + �Δf + �N + �c where �res 
evaluates the reconstruction residuals of the model with respect to the obser-
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Table 2. Dimensions ein, dpx, dpatch, q and Δf (cf. Fig. 2). Modules consist of stacked 
MLPs. Each element in Dim. denotes the dimension of individual perceptrons in a single 
MLP, Reps. the number of perceptrons in a single MLP (all with the same dimension 
reported in Dim.) and  Dp the dropout rate of the output of each MLP. For a detailed 
architecture description see [ 7]. 

Module Parameters 
Encoder ein Dim. (1000, 500, 200, 100, 50, 50, 50, 30) 

Reps. (2, 3, 3, 3, 3, 3, 3, 3)  

Dp (0.05, 0.01, 0.01, 0.01, 0.005, 0.001) 

Decoders dpx, dpatch and q Dim. (100, 50, 50, 50) 

Reps. (3, 2, 2, 2)  

Dp (0.001, 0.001, 0.0) 

Δf Dim. (1000, 200, 100, 50, 50, 50) 

Reps. (2, 3, 3, 3, 3, 1)  

Dp (0.05, 0.005, 0.001) 

vational input, �m and �Δf ensure that the network matches prior knowledge,
�N ensures the physiological plausibility of the SIF estimates and �c denotes a 
perturbation based regularization that enhances the decorrelation between pre-
dicted variables by means of a physically accurate augmentation. Self-supervised 
learning with radiance observations is addressed by adopting the methodology of 
[ 5, 7], where the reconstructed signal is compared to the observation similarly to 
other self-supervised methods such as masked auto-encoders [ 29,31]. A squared 
residual over the whole spectrum as well as a weighted residual boosting the 
loss in spectral regions with high average fluorescence contributions punish the 
network for not reproducing the at-sensor observations. This is implemented by

�res

(
L, L̂

)
=

〈(
L − L̂

)2
〉

λ, x 
+ γf 

|Wout|

〈∑
λ∈Wout 

wλ

(
L(λ) − L̂(λ)

)2
〉

x 

, (2) 

where 〈. . . 〉λ,x denotes the batchwise mean over the spatial and spectral dimen-
sion, and where L and L̂ denote the observations and emulated predictions in the 
spectral range Wout. The weighting wλ is resampled from the weights originally 
proposed in [ 5, 7] for the specific sensor characterization of the DESIS sensor. 
Furthermore, we also adopt the selective gradient backpropagation of the second 
term which is set to only affect the fluorescence prediction f̂740. 

The inclusion of prior information on atmospheric variables and the SIF 
emission are implemented as regularization terms

�m =
∑
k∈K 

γpk 
(p′

k − p̂k)2 and �Δf = γΔf

(
f̂ − finit

)2 

(3) 

where finit denotes the prediction of the supervised SIF predictor and where 
K = {H2O, AOT550}. We denote by H2O the water vapour density and by
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AOT550 the aerosol optical thickness at 550 nm, which are derived operationally 
and distributed with DESIS L2A products. Thus, �m introduces a supervised 
regression training of ancillary data from DESIS products as a secondary task. 
As an alternative strategy, we test in Sect. 4.3 a set-up where the ancillary data 
is passed directly to the input and the emulator for training and prediction. 
Accordingly, our model does not provide predictions of the atmospheric param-
eters (H2O, AOT550) in this latter variant. 

The SIF estimate finit, which we gain from a predictor trained on simulated 
DESIS data, is included in the loss parallelly to �m. This effectively controls 
the range of deviation that the residual module Δf is allowed to introduce. 
Additionally, the fluorescence estimate of the residual module is controlled by 
the constraint

�N = γN f̂ δ  (NDVI(L) ≤ τ ) (4) 

to ensure vanishing SIF predictions in pixels without vegetation, i.e., with small 
NDVI [ 5, 7]. We fix τ = 0.15 in all experiments. 

Finally, we leverage the compact physical description of the generation of 
at-sensor radiance given by the emulator to derive a perturbation based aug-
mentation for regularization that we will refer to as consistency regularization. 

Fig. 4. Overview of an image excerpt of a DESIS acquisition matching HyPlant (2023) 
validation data (Fig. 3). Left to right: RGB composite, NDVI derived from L2A, relative 
reconstruction error, fluorescence estimate f740, initial fluorescence estimate f init 740 . 

We denote by gpj 
the prediction of emulator input variables pj . Consequently, 

gpj 
are approximate partial inversions of the emulator e. Perturbations of the 

input radiance L by δL affect the predictor gf and vice-versa perturbations δf 
of the predicted fluorescence f̂ affect the emulator: 

gf (L + δL) =  ̂f + δf and e( ̂f + δf, pj) =  Le + δLe (5) 

where the spectral range Wout of the emulator output Le is smaller than the 
range of the observational DESIS spectrum L due to a practical limitation of
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the emulator design. We can simulate new approximate samples by generating 
radiance perturbations δLe. To do this, we write 

(L + δL)(λ) ≈ L′
δf = L(λ) +  δLe δ (λ ∈ Wout) , (6) 

where δLe = e( ̂f + δf, pj) − e( ̂f,  pj). 

Neglecting any simulation errors and inaccuracies due to the perturbation imple-
mentation of L′

δf an optimal solution should yield 

gf

(
L′

δf

) − f̂ = δf and gpj

(
L′

δf

)
= pj , (7) 

since all changes in the perturbed observation can be attributed to a change in 
fluorescence in this case. We thus formulate the regularization as

�c(L, f̂ ,  ̂pj) =  Eδf∼F

[(
gf

(
L′

δf

) − ( ̂f + δf)
)2 

+
(
gpj

(
L′

δf

) − p̂j

)2] (8) 

where F is the fluorescence range over which e is defined. We implement the 
expectation as a mean over a uniformly sampled set of δf in each training forward 
pass. 

Fig. 5. Conditional 2d-histogram of DESIS SIF estimates of the best performing run 
(γc = 5  × 103 , γAOT = 100) compared to HyPlant (2023), HyPlant (2020) and OCO-3 
validation data sets Table 1, red dashed lines denote the 10, 25, 75 and 90 percentiles. 

4 Results 

4.1 Reconstruction Performance and Validation 

The network must reconstruct observed spectra with high accuracy. The model 
trained on all DESIS acquisitions with matching HyPlant or OCO-3 SIF products 
(Table 1) with the proposed loss (with γf = 1,  γΔf = 5,  γH2O = 1  and  γN = 10  
fixed during preliminary experimental runs and γAOT = 100 and γc = 5  × 103
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being the best configuration) reaches a mean relative reconstruction error of 1.6 
% (Fig. 3 (a)). The spectral variation of the reconstruction error is small (Fig. 3 
(b)) which evidences the model’s capacity to plausible signal generation across 
the spectral domain. We equally observe that the reconstruction error is reduced 
under inclusion of f740 compared to reconstructions where we fixed f740 = 0.  

In Fig. 4 we show an exemplary result. The prediction of f740 exhibits a 
reduced noise level compared to f init 740 and correlates with the distribution of 
agricultural fields. In order to assess the performance quantitatively we com-
pare DESIS SIF estimates to matching HyPlant and OCO-3 SIF estimates 
(Table 1). Since existing SIF retrieval methods are not adapted to DESIS data 
(cf. Sect. 3) we rely on these estimates as ground truth. The same configuration as 
above yields a mean absolute difference 〈Δf740〉HyP23 = 0.78 mW nm−1 sr−1 m−2 

(smaller is better) and a coefficient of determination r2 HyP23 = 0.6 (larger is bet-
ter) in the HyPlant (2023) data set. The DESIS estimates perform worse in a 
comparison with HyPlant (2020) data (〈Δf740〉HyP20 = 0.86 mW nm−1 sr−1 m−2 

and r2 HyP20 = −0.01) due to a large overestimation of our approach. This is 
expected since the data was recorded closer to solar noon when the diurnal course 
of SIF peaks [ 9,66]. Finally, we find 〈Δf740〉OCO3 = 0.58 mW nm−1 sr−1 m−2 and 
r2 OCO3 = 0.2 compared to OCO-3 data (cf. Fig. 5). 

We evaluated the consistency regularization and the inclusion of ancillary 
data on the SIF prediction. We only validated with respect to the HyPlant (2023) 
and OCO-3 data sets as the acquisition time difference of HyPlant (2020) would 
have introduced large biases. In addition to the metrics above, we report 〈Δf740〉
and r2 for bias corrected data to differentiate between performance increases due 
to bias reduction and due to increased explanation of label variance, i.e., 

R2 = r2
(
n ◦ f740, n  ◦ f̂740

)
and 〈Δf740〉′ = 〈Δ (n ◦ f740)〉 , (9) 

where n(x) =  x − 〈x〉. Furthermore, since there is an empirical correlation 
between SIF and reflectance due to common causal drivers, a stronger validation 
consists in conditioning the model’s performance on reflectance ρ. Subsequently, 
we define the reflectance constrained explained variation

〈
R2

〉
A = |P |−1

∑
ρ780∈P 

R2(Aρ780), Aρ780 = p
(
f740

∣∣∣ f̂740, |ρ − ρ780| < dρ
)

(10) 
where dρ = 0.02 and exclusively reflectance in a single DESIS band (ρ780) is  
considered. Only the HyPlant (2023) data set is large enough to calculate

〈
R2

〉
A 

confidently, however. We focus on the reflectance at 780 nm since the influence of 
SIF on DESIS L2A reflectances at 780 nm is negligible while ρ780 also is strongly 
correlated to vegetation cover. Similarly, we characterize Aρ780 by the slope sA 
and bias bA of a linear model fitted to it (cf. Fig. 6 (c)). Since we expect this bias 
to vanish for perfect predictions we calculate the mean reflectance dependent 
bias MAEb = 〈bA〉 as an additional performance metric.
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Fig. 6. (a) and (b): performance of the model trained with varying γc as compared 
to HyPlant (2023) and OCO-3 SIF. (c): Reflectance constrained metrics for the case 
γAOT = 0,  γc = 5  × 103 , light blue and light red colors denote the uncertainty of the 
least-squares fit to gain s and b, (d): metrics under varying γc in HyPlant (2023) data. 

Fig. 7. Model performance with respect to HyPlant (2023) SIF in (a) and (c) and 
OCO-3 SIF in (b) and (d) under variable γAOT. Light colors indicate γc = 0, dark 
colors indicate γc = 5  × 103 . Horizontal lines indicate the performance of the model 
runs without ancillary data in Sect. 4.2.
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4.2 Consistency Regularization Weighting γc 

In order to evaluate the impact of the consistency regularization �c on DESIS 
SIF, we perform a grid search over γc (Fig. 6 (a) and (b)) without including �m in 
the training loss. In the OCO-3 data set the inclusion of �c at all tested weights γc 
outperforms the case γc = 0 in terms of 〈Δf740〉 (smaller is better) and generally 
also in terms of R2 (larger is better) (Figs. 6 (a) and (b)). With HyPlant (2023) 
we find only a localized performance optimum at γc ∼ 5×103 in terms of 〈Δf740〉
and r2. We show in Fig.  6 (c) that we find particularly strong overestimation at 
ρ780 > 0.5 Improved performance under �c in HyPlant, however, can be seen in 
terms of MAEb and

〈
R2

〉
A (Fig. 6 (d)). Specifically, we find

〈
R2

〉
A > 0 only if 

the consistency regularization is applied. 

4.3 Inclusion of Ancillary Data 

To assess the impact of including ancillary data in the SIF retrieval, we con-
duct a grid search over γAOT (while fixing γH2O = 1). First, we establish the 
performance difference between using the proposed regularization scheme in 
Eq. (3) and providing the data directly to the input and the emulator. We 
denote this configuration by γAOT = 0 in Fig. 7. We find decreased r2 and 

Fig. 8. Reflectance constrained metrics for γAOT. Light colors indicate model runs 
with γc = 0, dark colors indicate runs with γc = 5  × 103 . Horizontal lines denote the 
reflectance constrained performance results of the model runs without ancillary data 
in Fig. 6 (d). (b): Reflectance constrained metrics for γAOT = 100, γc = 5  × 103 . Light  
blue and light red denote the uncertainty of the least-squares fit to gain s and b. (Color  
figure online)

〈Δf740〉 performance in all HyPlant configurations (Fig. 7) compared to cases 
γAOT > 0. Equally, decreased r2 performance can be observed in the compar-
ison with OCO-3 SIF estimates. Secondly, we can observe that runs with high 
γAOT approximately reach the same SIF prediction performance as model runs 
without any ancillary data from Sect. 4.2 (Fig. 7 (a) and (c)). Finally, similarly 
to the results in Sect. 4.2, we can observe a performance increase in the HyPlant
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(2023) and OCO-3 datasets when using γc. This is observable in r2, 〈Δf740〉, 
MAEb and

〈
R2

〉
A (Fig. 8 (a)). In particular, the previously observed large over-

estimation at high ρ780 is reduced (Fig. 8 (b)). 

5 Discussion 

5.1 Decorrelating Impact of Consistency Regularization 

The introduction of �c proved beneficial to the overall SIF retrieval performance. 
In a study of the performance of

〈
R2

〉
A
, we isolated the model performance inde-

pendent of the empirical correlation between SIF and ρ780. We found improved 
performance in terms of

〈
R2

〉
A under the inclusion of �c (Fig. 6 (c) and (d)) 

indicating that the consistency regularization �c has the intended effect of decor-
relating the target signal from confounding factors. The weighting γc has to be 
chosen carefully, however. Increased MAEb at large γc may have been due (i) 
to imperfect sample generation in �c introducing a domain gap between the 
observations and the augmentations and (ii) a trade-off between reconstruction 
accuracy and minimization of �c. 

5.2 Inclusion of Ancillary Data Sources 

In order to reduce the retrieval problem’s ill-posedness we have proposed the 
use of a regularization that implements the supervised learning of atmospheric 
emulator prediction variables with ancillary data sources as labels. The regular-
ization formulates a secondary downstream task in addition to the decomposition 
of the spectral observations into constituent variables. Importantly, we could see 
improved SIF retrieval performance with this regularization in terms of a reduced 
reflectance dependent bias MAEb when used with �c. As systematic integration 
of ancillary data is also planned for the FLEX mission by operating it in tandem 
with Sentinel-3 [ 16] the retrieval approach explored in this contribution could 
benefit similar SIF retrieval approaches on FLEX imagery. 

6 Conclusion 

In this contribution we have presented a deep learning architecture for SIF 
retrieval from DESIS imagery. This work is the first to use hyperspectral DESIS 
data for SIF retrieval. A unique data set of spatially and temporally closely 
matching HyPlant SIF estimates has allowed us to perform a detailed valida-
tion study of the methodology proposed in this work. The good performance 
of our model with respect to these high-quality SIF estimates (〈Δf740〉 = 
0.78 mW nm−1 sr−1 m−2, r2 = 0.6) supports our finding that it is possible to 
derive SIF from DESIS products. Further comparison with a data set of glob-
ally distributed OCO-3 SIF estimates could establish the sensitivity of our SIF 
product in a wider variety of observational and ground conditions and may form 
the basis for an operational SIF product from DESIS data.
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To achieve the good SIF prediction performance, we have extended a self-
supervised simulation-based deep learning approach [ 5, 7]. Several changes to 
the loss formulation were necessary to address the lower SR and SNR of DESIS 
imagery. Most importantly, we have (i) introduced a perturbation based aug-
mentation to improve signal decorrelation and (ii) tested the inclusion of ancil-
lary data by formulating a secondary supervised downstream task. We could 
show that both the perturbation based augmentation and the supervised down-
stream task formulations improved SIF retrieval performance when comparing 
both with HyPlant and OCO-3 SIF products. We furthermore could observe 
improved decorrelation of DESIS SIF from ρ780 when making use of the augmen-
tation during training. Since this perturbation based regularization strategy is 
not restricted to remote sensing data it may be implemented in other simulation-
based deep learning applications to decrease the influence of confounding factors. 
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