001048174 001__ 1048174
001048174 005__ 20251217202226.0
001048174 0247_ $$2doi$$a10.1016/j.rse.2025.114944
001048174 0247_ $$2ISSN$$a0034-4257
001048174 0247_ $$2ISSN$$a1879-0704
001048174 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04536
001048174 037__ $$aFZJ-2025-04536
001048174 041__ $$aEnglish
001048174 082__ $$a550
001048174 1001_ $$00000-0003-0111-0861$$aPato, Miguel$$b0$$eCorresponding author
001048174 245__ $$aSimulation framework for solar-induced fluorescence retrieval and application to DESIS and HyPlant
001048174 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001048174 3367_ $$2DRIVER$$aarticle
001048174 3367_ $$2DataCite$$aOutput Types/Journal article
001048174 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765964081_20109
001048174 3367_ $$2BibTeX$$aARTICLE
001048174 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048174 3367_ $$00$$2EndNote$$aJournal Article
001048174 520__ $$aFluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O2-A with the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to train emulators capable of generating at-sensor radiances with sub-percent errors in tens of μs, opening the way for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively assessed for different on- and off-band configurations in order to identify the best band combinations. This highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best possible performance for a given instrument.
001048174 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001048174 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001048174 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048174 7001_ $$00000-0003-2469-8290$$aAlonso, Kevin$$b1
001048174 7001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b2
001048174 7001_ $$00000-0001-9310-2337$$aAuer, Stefan$$b3
001048174 7001_ $$00009-0008-8998-7310$$aCarmona, Emiliano$$b4
001048174 7001_ $$0P:(DE-Juel1)188300$$aMaier, Stefan$$b5$$ufzj
001048174 7001_ $$00000-0002-3288-5814$$aMüller, Rupert$$b6
001048174 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001048174 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8
001048174 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9
001048174 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2025.114944$$gVol. 330, p. 114944 -$$p114944 -$$tRemote sensing of environment$$v330$$x0034-4257$$y2025
001048174 8564_ $$uhttps://juser.fz-juelich.de/record/1048174/files/Pato%20et%20al_2025_Simulation%20framework%20for%20solar-induced%20fluorescence%20retrieval%20and%20application.pdf$$yOpenAccess
001048174 909CO $$ooai:juser.fz-juelich.de:1048174$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b2$$kFZJ
001048174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188300$$aForschungszentrum Jülich$$b5$$kFZJ
001048174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001048174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001048174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001048174 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001048174 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001048174 9141_ $$y2025
001048174 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048174 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001048174 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001048174 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048174 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
001048174 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001048174 920__ $$lyes
001048174 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001048174 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x1
001048174 980__ $$ajournal
001048174 980__ $$aVDB
001048174 980__ $$aUNRESTRICTED
001048174 980__ $$aI:(DE-Juel1)IBG-2-20101118
001048174 980__ $$aI:(DE-Juel1)IAS-8-20210421
001048174 9801_ $$aFullTexts