001     1048174
005     20251217202226.0
024 7 _ |a 10.1016/j.rse.2025.114944
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04536
|2 datacite_doi
037 _ _ |a FZJ-2025-04536
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Pato, Miguel
|0 0000-0003-0111-0861
|b 0
|e Corresponding author
245 _ _ |a Simulation framework for solar-induced fluorescence retrieval and application to DESIS and HyPlant
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765964081_20109
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O2-A with the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to train emulators capable of generating at-sensor radiances with sub-percent errors in tens of μs, opening the way for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively assessed for different on- and off-band configurations in order to identify the best band combinations. This highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best possible performance for a given instrument.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Alonso, Kevin
|0 0000-0003-2469-8290
|b 1
700 1 _ |a Buffat, Jim
|0 P:(DE-Juel1)188104
|b 2
700 1 _ |a Auer, Stefan
|0 0000-0001-9310-2337
|b 3
700 1 _ |a Carmona, Emiliano
|0 0009-0008-8998-7310
|b 4
700 1 _ |a Maier, Stefan
|0 P:(DE-Juel1)188300
|b 5
|u fzj
700 1 _ |a Müller, Rupert
|0 0000-0002-3288-5814
|b 6
700 1 _ |a Rademske, Patrick
|0 P:(DE-Juel1)162306
|b 7
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 9
773 _ _ |a 10.1016/j.rse.2025.114944
|g Vol. 330, p. 114944 -
|0 PERI:(DE-600)1498713-2
|p 114944 -
|t Remote sensing of environment
|v 330
|y 2025
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/1048174/files/Pato%20et%20al_2025_Simulation%20framework%20for%20solar-induced%20fluorescence%20retrieval%20and%20application.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048174
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188104
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188300
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2022
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b REMOTE SENS ENVIRON : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21