001048342 001__ 1048342
001048342 005__ 20251119153439.0
001048342 037__ $$aFZJ-2025-04564
001048342 041__ $$aEnglish
001048342 1001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b0$$eCorresponding author$$ufzj
001048342 1112_ $$aSoftComp Annual Meeting 2025$$cVenice$$d2025-05-19 - 2025-05-22$$wItaly
001048342 245__ $$aMorphological Transitions in Block Copolymer Surface Micelles via Solvent Immersion and the Effective Protein-salt Binding
001048342 260__ $$c2025
001048342 3367_ $$033$$2EndNote$$aConference Paper
001048342 3367_ $$2DataCite$$aOther
001048342 3367_ $$2BibTeX$$aINPROCEEDINGS
001048342 3367_ $$2DRIVER$$aconferenceObject
001048342 3367_ $$2ORCID$$aLECTURE_SPEECH
001048342 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1763559704_1590$$xAfter Call
001048342 520__ $$aIn this combined talk, first a comprehensive library of nanopatterns derived from a single block copolymer (BCP) exhibit wide range of structures from simple spheres to more intricate forms, including split micelles, flower-like clusters, toroids, disordered arrays, and other unique morphologies [1]. Using polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) surface micelles deposited on SiOx surfaces, a distinctive transformation in morphology is triggered by direct immersion in various solvents. By varying the solvent type, BCP molecular weight, substrate interactions, and temperature, the thermodynamic and kinetic parameters are also affected by these driving morphological transitions. Furthermore, the work highlights the practical utility of BCP nanopatterns as templates for fabricating metal nanostructures via direct solvent immersion. This method provides a versatile and efficient strategy for producing diverse nanostructures, with potential applications in the fields of nanolithography, catalysis, electronics, membranes, plasmonics, and photonics. Secondly, the protein crystallization (kinetics) and liquid−liquid phase separation (LLPS) are to be presented, showing the effective protein (lysozyme)-salt (NaSCN) binding in the phase diagram, with distinct crystal morphologies, by single- and multi-arm crystals, flower-like crystal structures, whiskers, and sea-urchin crystals [2]. Crystal morphologies exhibit significant variations in changes in protein and salt concentrations. Moreover, the adsorption of SCN− ions to the surface of lysozyme is effectively enhanced by applying the weak AC electric field in protein crystallization processes.Reference:[1] Seokyoung Bae, Dong Hyup Kim*, and So Youn Kim*, Small, 20, 2311939 (2024)[2] D. Ray, M. Madani, J. K. G. Dhont, F. Platten and K. Kang*, Phys. Chem. Lett. 15, 8108−8113 (2024).
001048342 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001048342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b0$$kFZJ
001048342 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001048342 920__ $$lyes
001048342 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001048342 980__ $$aconf
001048342 980__ $$aEDITORS
001048342 980__ $$aVDBINPRINT
001048342 980__ $$aI:(DE-Juel1)IBI-4-20200312
001048342 980__ $$aUNRESTRICTED