001048357 001__ 1048357
001048357 005__ 20251120202159.0
001048357 0247_ $$2doi$$a10.5334/dsj-2025-033
001048357 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04577
001048357 037__ $$aFZJ-2025-04577
001048357 082__ $$a500
001048357 1001_ $$0P:(DE-Juel1)195772$$aTsybenko, Hanna$$b0
001048357 245__ $$aDigital Transformation in Materials Science: A User Journey of Nanoindentation, Image Analysis and Simulations
001048357 260__ $$aParis$$bCODATA$$c2025
001048357 3367_ $$2DRIVER$$aarticle
001048357 3367_ $$2DataCite$$aOutput Types/Journal article
001048357 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763654000_13858
001048357 3367_ $$2BibTeX$$aARTICLE
001048357 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048357 3367_ $$00$$2EndNote$$aJournal Article
001048357 520__ $$aA robust digital infrastructure, built upon overarching frameworks and software tools, is essential for the ongoing digital transformation in materials science and engineering. This user journey demonstrates the seamless integration of distinct technical solutions for data handling and analysis, enabling (a) the pursuit of a specific scientific question and (b) adherence to FAIR principles. The scientific study selected for this user journey focuses on comparing different measures of the elastic modulus of a typical engineering material. The user journey involves three research groups replicating real-world collaborative research scenarios. Specifically, it integrates existing digital solutions for experimental data management (PASTA-ELN), simulation workflow execution (pyiron), and image processing workflow execution (Chaldene). Within the auxiliary data management workflow, generated data and metadata are systematically stored in repositories, with metadata aligned to the MatWerk Ontology. Key insights from this user journey include lessons learned from scientists’ perspectives and recommendations for improvement, such as machine-readable experimental protocols, standardized workflow representation, and automated metadata extraction.
001048357 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001048357 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048357 7001_ $$00000-0002-6776-1213$$aMenon, Sarath$$b1
001048357 7001_ $$00000-0001-7890-0330$$aChen, Fei$$b2
001048357 7001_ $$0P:(DE-HGF)0$$aGuzman, Abril Azocar$$b3
001048357 7001_ $$00000-0001-7550-552X$$aGrünwald, Katharina$$b4
001048357 7001_ $$0P:(DE-Juel1)164854$$aBrinckmann, Steffen$$b5$$eCorresponding author
001048357 7001_ $$00000-0003-0698-4891$$aHickel, Tilmann$$b6
001048357 7001_ $$00000-0003-4060-7192$$aDahmen, Tim$$b7
001048357 7001_ $$0P:(DE-Juel1)185902$$aHofmann, Volker$$b8
001048357 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b9
001048357 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b10
001048357 773__ $$0PERI:(DE-600)2128236-5$$a10.5334/dsj-2025-033$$gVol. 24, p. 33$$p33$$tData science journal$$v24$$x1683-1470$$y2025
001048357 8564_ $$uhttps://datascience.codata.org/articles/10.5334/dsj-2025-033
001048357 8564_ $$uhttps://juser.fz-juelich.de/record/1048357/files/691b215dc788c.pdf$$yOpenAccess
001048357 909CO $$ooai:juser.fz-juelich.de:1048357$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b5$$kFZJ
001048357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185902$$aForschungszentrum Jülich$$b8$$kFZJ
001048357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b9$$kFZJ
001048357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b10$$kFZJ
001048357 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001048357 9141_ $$y2025
001048357 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001048357 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048357 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-10-02T14:24:29Z
001048357 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-10-02T14:24:29Z
001048357 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048357 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-10-02T14:24:29Z
001048357 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
001048357 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001048357 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
001048357 920__ $$lyes
001048357 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001048357 980__ $$ajournal
001048357 980__ $$aVDB
001048357 980__ $$aUNRESTRICTED
001048357 980__ $$aI:(DE-Juel1)IAS-9-20201008
001048357 9801_ $$aFullTexts