001     1048357
005     20251120202159.0
024 7 _ |a 10.5334/dsj-2025-033
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04577
|2 datacite_doi
037 _ _ |a FZJ-2025-04577
082 _ _ |a 500
100 1 _ |a Tsybenko, Hanna
|0 P:(DE-Juel1)195772
|b 0
245 _ _ |a Digital Transformation in Materials Science: A User Journey of Nanoindentation, Image Analysis and Simulations
260 _ _ |a Paris
|c 2025
|b CODATA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763654000_13858
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A robust digital infrastructure, built upon overarching frameworks and software tools, is essential for the ongoing digital transformation in materials science and engineering. This user journey demonstrates the seamless integration of distinct technical solutions for data handling and analysis, enabling (a) the pursuit of a specific scientific question and (b) adherence to FAIR principles. The scientific study selected for this user journey focuses on comparing different measures of the elastic modulus of a typical engineering material. The user journey involves three research groups replicating real-world collaborative research scenarios. Specifically, it integrates existing digital solutions for experimental data management (PASTA-ELN), simulation workflow execution (pyiron), and image processing workflow execution (Chaldene). Within the auxiliary data management workflow, generated data and metadata are systematically stored in repositories, with metadata aligned to the MatWerk Ontology. Key insights from this user journey include lessons learned from scientists’ perspectives and recommendations for improvement, such as machine-readable experimental protocols, standardized workflow representation, and automated metadata extraction.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Menon, Sarath
|0 0000-0002-6776-1213
|b 1
700 1 _ |a Chen, Fei
|0 0000-0001-7890-0330
|b 2
700 1 _ |a Guzman, Abril Azocar
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grünwald, Katharina
|0 0000-0001-7550-552X
|b 4
700 1 _ |a Brinckmann, Steffen
|0 P:(DE-Juel1)164854
|b 5
|e Corresponding author
700 1 _ |a Hickel, Tilmann
|0 0000-0003-0698-4891
|b 6
700 1 _ |a Dahmen, Tim
|0 0000-0003-4060-7192
|b 7
700 1 _ |a Hofmann, Volker
|0 P:(DE-Juel1)185902
|b 8
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 9
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 10
773 _ _ |a 10.5334/dsj-2025-033
|g Vol. 24, p. 33
|0 PERI:(DE-600)2128236-5
|p 33
|t Data science journal
|v 24
|y 2025
|x 1683-1470
856 4 _ |u https://datascience.codata.org/articles/10.5334/dsj-2025-033
856 4 _ |u https://juser.fz-juelich.de/record/1048357/files/691b215dc788c.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048357
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)164854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)185902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)186075
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)179598
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-10-02T14:24:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-10-02T14:24:29Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-10-02T14:24:29Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21