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ABSTRACT 

A robust digital infrastructure, built upon overarching frameworks and software 

tools, is essential for the ongoing digital transformation in materials science and 

engineering. This user journey demonstrates the seamless integration of distinct 
technical solutions for data handling and analysis, enabling (a) the pursuit of a 

specific scientific question and (b) adherence to FAIR principles. The scientific study 

selected for this user journey focuses on comparing different measures of the elastic 

modulus of a typical engineering material. The user journey involves three research 

groups replicating real-world collaborative research scenarios. Specifically, it integrates 
existing digital solutions for experimental data management (PASTA-ELN), simulation 

workflow execution (pyiron), and image processing workflow execution (Chaldene). 
Within the auxiliary data management workflow, generated data and metadata are 

systematically stored in repositories, with metadata aligned to the MatWerk Ontology. 
Key insights from this user journey include lessons learned from scientists’ perspectives 
and recommendations for improvement, such as machine-readable experimental 
protocols, standardized workflow representation, and automated metadata extraction. 
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2 1 INTRODUCTION 

Recent decades of research data management in materials science have been shaped by 

several key factors. First, materials science has increasingly become a data-driven discipline 

within the engineering sciences, driven by the rapid accumulation of heterogeneous data that 
often varies in format, quality, and quantity (Rodrigues et al., 2021; Scheffler et al., 2022). 
Second, the field is inherently multi- and interdisciplinary, with data generated and exchanged 

across experimental and computational workflows. These workflows typically involve multiple 

collaborating teams with diverse expertise, enabling thorough interpretation and validation 

of research findings. Third, widespread recognition of the reproducibility crisis in academic 

research (Baker, 2016) has spurred substantial community efforts to establish new standards 
and practices aimed at enhancing the transparency and repeatability of both data and 

scientific workflows. Furthermore, the potential for materials data to be reused beyond its 
original purpose—such as in computer-aided materials discovery—significantly enhances its 
value (DeCost et al., 2020; Himanen et al., 2019). This potential underscores the need for 
research data to be findable, machine-readable, and accessible following publication. 

These challenges were partially addressed through the establishment of the FAIR (Findable, 
Accessible, Interoperable, Reusable) principles—a set of data management criteria designed 

for the scientific community (Go-FAIR, 2024; Wilkinson et al., 2016). A core emphasis is placed 

on rich, standardized, and systematically documented metadata to enhance the ability to 

discover and exchange data, and reusability. Additionally, globally unique persistent identifiers 
(PIDs) and clearly defined data access protocols further support these principles. While the 

original guidelines primarily targeted (meta)data as research outputs, recent initiatives have 

expanded their scope to encompass research software (Barker et al., 2022; Chue Hong et al., 
2022) and entire scientific workflows (Celebi et al., 2020; de Visser et al., 2023; Goble et al., 2020; 
Nicolae et al., 2023; Wilkinson et al., 2022). These principles provide an essential theoretical 
framework for reproducible research practices (Deutsche Forschungsgemeinschaft, 2022), but 
their practical implementation depends on available resources, existing standards, and the 

specific requirements of research domains, funding agencies, and institutions. 

In practice, FAIR data management is facilitated by various software tools and technologies 
across the research life cycle. Electronic laboratory notebooks (ELNs) support metadata 

documentation while centralizing (meta)data storage from various experimental sources. 
Research software for numerical modeling and data analysis often integrates FAIR data 

management components within comprehensive computational frameworks. These tools 
frequently interface with workflow management systems for formulating, scheduling, and 

executing computational workflows. Metadata schemas and ontologies further enrich and unify 

semantic dataset descriptions through standardized terms and formalized relationships. Data 

repositories enable data publication, preservation, discovery, and sharing by providing storage 

capabilities and assigning PIDs. Collectively, these tools form the backbone of digital research 

data infrastructures in materials science (Scheffler et al., 2022). 

For any specific research project, the sequential use of software tools can be considered 

a customizable workflow. However, such implementations present distinct challenges for 
researchers: software may require specific hardware setups for accessibility within laboratory 

environments, or it may lack interoperability because of different file formats and different 
metadata nomenclature. Additional adoption barriers include the need for user training, 
software customization, and limited usability of user interfaces (Higgins et al., 2022; Kanza 

et al., 2017). These challenges are amplified in collaborative research projects, where increased 

data volumes and diversified software complicate workflow management. Therefore, during 

software development, it is crucial to assess user interactions within realistic workflows that 
generate, analyze, and share data. One widely used method for identifying user needs and 

potential issues is user journey mapping (Stickdorn and Schneider, 2012), an approach rooted 

in agile software development practices. 

In this article, we implement a user journey to investigate scientists’ subjective experiences 
and perspectives when using various software tools to facilitate transparent, reproducible 

workflows and produce FAIR materials science data. This user journey encompasses 
three scientific workflows executed by collaborating groups to address an overarching 

research question, alongside an external data management workflow for FAIR (meta)data 
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3 storage, exchange, and publication. To achieve this, we employ a suite of software and 

technologies supported by the NFDI-MatWerk Consortium. These include solutions for 
experimental research data management (PASTA-ELN, 2024), image processing workflow 

execution (Chaldene (Chen et al., 2022)), and simulation workflow execution (Janssen 

et al., 2019; pyiron, 2024). The data management platform Coscine and a GitLab (2024) 
repository were utilized for storing and sharing workflow outputs. Furthermore, metadata 

from these workflows was aligned with the MatWerk Ontology (2024), converted into 

both machine- and human-readable formats, and ultimately integrated into the MSE 

Knowledge Graph (2024). 

Through this user journey, we gain insights into how scientists interact with these tools and 

navigate the various stages of research. We also identify specific challenges encountered 

when managing research data in collaborative projects involving multiple integrated software 

solutions. By learning from these experiences, we aim to better align software design and 

functionality with user requirements, enhance usability, and optimize data production pipelines. 
Ultimately, we demonstrate a realistic problem-solving process facilitated by research data 

management software. We include a glossary at the end of the paper to provide definitions 
of key materials science terms used in the subsequent sections. 

2 BUILDING BLOCKS OF THE USER JOURNEY 

This work investigates the scientific application of software tools, focusing on their role in 

facilitating collaborative research workflows. The goals of the user journey implementation can 

be defined as follows: 

• Follow the scientists: Track the collaborative efforts of researchers working towards 
solving a scientific challenge in the domain of materials science. In this user journey, the 

goal is to determine Young’s modulus of Aluminum by experiments and simulations. As 
multiple methods and analysis tools are employed, interoperability represents one of the 

major challenges. 

• Promote FAIR principles: Employ solutions that advance Findable, Accessible, 
Interoperable, and Reusable (FAIR) data practices and workflows. 

• Document workflows and interactions: Record the resulting workflows and investigate 

the scientists’ points of interaction with the software (see section 2.2) and other user 
journey personas (see section 2.3). 

• Analyze user experiences: Evaluate the scientists’ experiences to identify existing 

challenges and opportunities for optimization. 

2.1 APPROACH 

The general modeling approach for the user journey focuses on representing how materials 
scientists interact with software tools to generate FAIR data. This approach emphasizes realistic 

research practices and working conditions, covering the main stages of a scientific project, 
including the end-to-end pipeline of data handling throughout the project life cycle. This 
life cycle encompasses data collection, data processing, data analysis, data storage, and 

data sharing. By following these steps, the research project additionally follows the FAIR 

principles, as detailed in the Appendix. Certain steps, such as the reuse of published data, 
were intentionally excluded, as they would initiate a new iteration of the research cycle 

with a different set of agents, thereby extending the user journey beyond its original scope. 
A crucial aspect of recreating authentic research conditions is to frame a problem suitable for a 

highly collaborative environment. For instance, a comparative study requires multiple scientific 

methods, engagement from several research groups, and extensive data exchange. Moreover, 
integrating experimental and computational methods to compare and validate results aligns 
with the project’s interdisciplinary nature. This report provides only a brief description of 
the individual software tools, as they are expected to evolve significantly in the future. The 

primary focus is on the scientists’ workflow rather than the tools themselves. Additionally, 
these tools lack dedicated interoperability features. Therefore, this study examines the inherent 
interoperability of structured data and explores how the absence of purpose-built software 

interoperability impacts research. 
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4 The research question follows the state of the art of experimental and computational 
materials science. It focuses on comparing the elastic properties of an aluminum alloy 

(EN AW-1050A, 99.5 wt.% Al), a standard alloy grade used for sheet metal work. The elastic 

modulus is determined through three different methods corresponding to three distinct 
workflow components: 

1. Experimental workflow: Indentation-based measurements of a metal sample and the 

evaluation of Young’s modulus by the Oliver-Pharr method. 

2. Data analytic workflow: Image processing of confocal images and determining the 

contact area from the height profiles using the Sneddeon equation. 

3. Computational workflow: Molecular statics simulations to determine the energy of 
different atomistic configurations and evaluate the elastic moduli. 

4. Data management workflow: Handling external data to demonstrate effective 

collaboration, data storage, and metadata harmonization. 

Figure 1 Overview of the 
workflows in the user journey 
and its scientific challenge. 
The process begins with the 
preparation of aluminum 
samples, which are then 
deformed using nanoindentation. 
The resulting nanoindentation 
data is used to calculate 
Young’s modulus. To 
determine the contact area, 
the indentation imprint is 
measured using confocal 
microscopy, and the images 
are analyzed accordingly. 
Finally, molecular statics 
simulations are conducted to 
compute the energy for 
different configurations, 
allowing for the calculation of 
Young’s modulus for the 
aluminum alloy. 

This third workflow component underscores the importance of efficient data management 
among collaborators. Figure 1 provides an overview of the main user journey components. 

2.2 SOLUTIONS FOR DATA MANAGEMENT 

To achieve the objective of quantifying the elastic properties of an aluminum alloy, three 

classes of software tools are required. First, experimental data must be curated and organized; 
ELNs provide structured data capture and provenance. Second, quantitative image analysis 
performed by domain scientists requires advanced data-processing environments—Jupyter 
Notebooks support flexible analyses but present a usability barrier for researchers without 
Python experience. Third, determination of elastic constants from many energy-minimization 

simulations requires scalable workflow engines to orchestrate and parallelize large simulation 

ensembles. To promote accessibility and reuse, we use an ontology to define a shared, machine-
readable vocabulary (classes, properties, and constraints) and a knowledge graph to store and 

link instance-level data across workflows. The ontology ensures semantic interoperability, while 

the knowledge graph enables integrated queries, discovery, reasoning, and provenance tracing 

across experimental, image-analysis, and simulation datasets—directly advancing the FAIR 

principles. We selected the specific software tools to reflect the expertise and development 
priorities of the contributing teams, allowing evaluation and improvement of real-world 

implementations; this emphasizes that the architecture is tool-agnostic and can be realized 

with different toolchains. 

PASTA-ELN (2024) is an open-source ELN software designed to provide a centralized framework 

for research data management during experimental workflows. It focuses on organizing and 

analyzing raw experimental data stored on the researcher’s hard drive. Two key features 
are the automated (meta)data capture by extractor add-ons during data file integration 

into ELN projects. These metadata entries can be fully annotated according to the scientific 

domain as well as the FAIR principles. Additionally, PASTA-ELN automatically generates 
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5 digital representations of traditional laboratory notebooks. The adaptable structure allows the 

software to be used in a wide range of scientific domains. 

Chaldene (Chen et al., 2022) is a visual programming language for data analysis and scientific 

image processing workflows, built upon Jupyter Notebook features for interactive development 
and the scikit library for image processing. In Chaldene, the code blocks are represented as 
visual programming cells that can be assembled into directed acyclic graphs using nodes and 

connectors. This approach facilitates the creation and automatic execution of computational 
workflows that use a PNG or JPEG file for input. 

pyiron (2024) and Janssen et al. (2019) is an open-source, Python-based framework for 
computational workflows, providing functionalities for developing and executing various 
simulation tasks. Interactive development is facilitated through the Jupyter Notebook interface. 
The software includes a large number of simulation tools for materials scientists out of the box. 
pyiron employs “jobs”, objects of an abstract class, to standardize the steps and elements of 
simulation protocols. 

GitLab (2024) is a platform for collaborative development, code management, and data 

version control, enabling users to track changes to workflow outputs. However, GitLab does not 
guarantee their long-term data preservation (GitLab, 2024). To address this, workflow outputs 
were also stored in the Coscine (2024) repository developed at RWTH Aachen University. Coscine 

can store files of any type with a file size limit of 4TB. Each project and resource is assigned a 

Persistent Identifier (PID) and can be archived for 10 years, ensuring long-term data findability 

and accessibility in accordance with the principles of good scientific practice set by the German 

Research Foundation (2022). 

The MatWerk Ontology (2024) provides a standardized vocabulary and structure for metadata 

originating from diverse sources. It enables the harmonization of resource descriptions at 
the mid-level by offering terms such as projects, authors, repositories, software, instruments, 
and methods. Additionally, it includes material-specific metadata, such as material type, 
property, and condition. These standardized descriptions can populate the Materials Science and 

Engineering (MSE) Knowledge Graph, which is exemplified as a demonstrator and can be queried 

using the conventional SPARQL format. The Knowledge Graph represents the entire collected 

knowledge in an interconnected manner and facilitating enhanced discovery. 

2.3 PERSONAS 

To explore user interactions with the software tools during workflow execution, we define 

characteristic portraits of users representing the target groups, that is to say, personas. Modeling 

personas helps us better understand users’ motivations, needs, and behaviors in relation to 

studied products or services. 

The primary target group consists of Researcher personas, who fulfill multiple roles: 

1. Project planning and execution: Researchers contribute to project planning and ensure 

timely completion of tasks. 

2. Data production and analysis: They generate, collect, and analyze (meta)data, which is 
crucial for deriving research findings. 

3. Data management and FAIRification: Researchers share responsibility for managing 

datasets and ensuring their compliance with FAIR principles to enable future reuse. 

In these tasks, Researchers rely heavily on software solutions and the support from Research 

Data Management (RDM) Agents while adhering to community standards and institutional or 
funding agency requirements. Their main concerns regarding software tools include seamless 
integration into scientific workflows, ease of use, and efficient data exchange across research 

groups. Collaborative projects are typically cross-group or cross-institutional, with each group 

comprising one or more Researchers. To capture the diversity in expertise and domain 

knowledge, we introduce three Researcher personas reflecting different scientific disciplines 
and levels of data management proficiency. This approach allows us to examine (i) software 

workflows (e.g., a single Researcher using a single tool) and (ii) interactions of workflows at 
intersections (e.g., collaboration among multiple Researchers). The interaction of the Researcher 
personas is evaluated based on user feedback from the three individuals. 
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6 The second key user group comprises RDM Agents, who specialize in providing technical 
support for software solutions and act as a bridge between FAIR technology and Researchers. 
While Researchers drive the three scientific workflows, RDM Agents play a pivotal role in the 

external data management workflow. The RDM Agent persona typically comes from software 

development teams or has expertise in data stewardship. Their main objectives include: 

1. Understanding Researchers’ specific requirements and workflows 

2. Tailoring software solutions according to these needs 

3. Handling registration services, metadata structuring, and unification 

Since Researchers often actively contribute to software development or are among its core 

users, they may also take on RDM Agent roles. Thus, personas can be assigned to both roles 
simultaneously. However, since different RDM Agents do not interact with one another, a single 

RDM Agent persona is sufficient to represent this user journey. 

3 WORKFLOW EXECUTION 

In the following sections, we visualize the workflows and elaborate on the steps Researcher 
personas take to accomplish their tasks while interacting with each other and the software. 
Each workflow starts with Researcher personas planning and selecting the necessary methods 
and procedures. At this stage, they also define the expected output data and metadata formats 
and determine appropriate storage and publication strategies. 

3.1 EXPERIMENTAL WORKFLOW 

The experimental workflow is represented from the perspective of Researcher I (Figure 2). 
Instead of detailing the experimental methods, we focus on Researcher I’s interactions with 

PASTA-ELN and other Researcher personas. 

Figure 2 Experimental 
workflow within the user 
journey, illustrating the 
perspective of Researcher I, 
who uses PASTA-ELN for 
research data management. 
The workflow comprises five 
main tasks—initiation, 
experimental steps, data 
management, data analysis, 
and output—each with 
subtasks that connect to 
other Researchers and the 
PASTA-ELN software. 
Documentation and 
annotation subtasks ensure 
workflow provenance. 

PASTA-ELN serves as a centralized platform for data management, documentation, preliminary 

analysis, and packaging of research outputs for publication as digital objects. Each manual 
activity performed by Researcher I is digitally recorded, with corresponding metadata linked 

to the relevant data files. At the planning stage, Researcher I initializes an ELN project, which 

automatically creates a corresponding working directory in the file system. This directory 

functions as a drop-box for data files. 

After each step, a corresponding digital instance is manually created in the ELN project. PASTA-
ELN enables users to generate instances and integrate files related to Samples, Procedures, 
Instruments, and Measurements. In this case, Researcher I creates instances for: 
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7 • Specimen body (EN AW-1050A) 

• Measurement procedures (indentation, confocal microscopy) 

• Instruments (Fischerscope H100 C, LEXT OLS4000) 

Metadata is recorded in two formats: 

• Structured format (machine-readable) 

• Unstructured format (freehand comments) 

Upon completion of this stage, Researcher I shares the specimen composition with 

Researcher III, initiating the simulation workflow. 

At this stage, Researcher I integrates the collected data files into the ELN project by seamlessly 

creating digital instances of experimental objects or procedures and efficiently linking them. 
Since indentation and confocal microscopy data files are in proprietary formats (HAP and 

LEXT), they must be converted into open formats—HDF5 (Hierarchical Data Format version 5) 
and GWY—for further analysis. This conversion is performed using converter add-ons and 

Nečas and Klapetek (2012)’s work. Deciphering proprietary file formats is the biggest challenge 

in experimental workflows that use ELNs. To maintain data integrity, both proprietary and 

converted open-format files are stored within the ELN project directory. Researcher I then scans 
the working directory, which triggers the following processes: 

1. Files are integrated into the ELN project as digital instances. 

2. Hierarchical and descriptive metadata is saved to the Apache CouchDB (2024). 

3. File extractors identify compatible formats and automatically extract data and metadata 

into the project. 

Researcher I links the Measurement instances with their corresponding Sample and Procedure 

instances and manually adds additional metadata (Figure 3). 

To initiate the image processing workflow, Researcher I exports the confocal microscopy images 
from the ELN project and shares them with Researcher II. The exported ELN file is a ZIP 

archive-like bundle containing all project metadata and data, designed for interoperability 

across all different ELN platforms. The underlying file structure adheres to the RO-Crate 1.1 

standard (Soiland-Reyes et al., 2022), which supports FAIR data publication and can be included 

into repositories. The export contains (i) the collected data and (ii) the metadata file (ro-
crate-metadata.json), which follows the Schema.org (2024) in machine-readable JSON-LD 

format (Sefton et al., 2023) and is linked to the files in the data collection, thus acting as a 

table of contents. 

Figure 3 PASTA-ELN project 
screenshots showing extracted 
data and metadata from the 
confocal microscopy GWY file 
and the linked Sample, 
Procedure, and Instrument 
instances. Metadata is 
categorized into Details 
(general metadata), Vendor 
Metadata (extracted from the 
measurement file), User 
Metadata (defined by the 
user), and Database Metadata 
(required for ELN operation; 
omitted here). The 
measurement on the left is 
linked to a sample, procedure, 
and instrument, displayed on 
the right. 

Tsybenko et al. 
Data Science Journal 
DOI: 10.5334/dsj-2025-
033 

https://schema.org/


8 After receiving the estimated contact areas from the image processing workflow, Researcher I 
proceeds with elastic modulus analysis using the Oliver-Pharr Method (Oliver and Pharr, 1992, 
2004). This method involves using projected contact areas to calculate the effective elastic 

modulus, from which the elastic modulus of the sample is determined. For this analysis 
step, two data sets of projected contact areas are used: one based on the indenter tip area 

function and the other one determined via confocal microscopy image analysis. Researcher I 
incorporates the results into the ELN project, adding annotations and linking them to relevant 
data files. The experimental workflow concludes with the ELN file being uploaded to repositories 
for data sharing (section 3.4). 

3.2 DATA ANALYTICAL WORKFLOW IN CHALDENE 

The second scientific workflow in this user journey involves Researcher II, who executes an 

image processing workflow (Figure 4). This workflow is developed interactively in Jupyter 
Notebook using the Chaldene visual programming language. Its objective is to compute 

the projected contact areas of indentation imprints based on the confocal microscopy data 

obtained from Researcher I. 

Figure 4 Image processing 
workflow as a part of the user 
journey, demonstrating the 
perspective of Researcher II, 
who uses Chaldene as a 
scientific image processing 
tool. The workflow consists of 
five tasks—initiation, image 
preprocessing, analysis, data 
management, and 
output—each with subtasks 
that connect to other 
Researchers and integrate with 
the Chaldene software. 

In Chaldene, each workflow step is represented as a cell, equivalent to a code block in Jupyter 
Notebook. The cell nodes correspond to data states before and after processing and are linked 

through connectors, forming a graph representation of the workflow (Figure 5a). This approach 

ensures correct execution order and enables traceability of processing steps. 

The first part of preprocessing enhances image quality to improve contour detection for 
projected contact area analysis. Researcher II performs the following steps: (i) Data acquisition 

and format conversion to extract confocal height data (Figure 5b) from the ELN file and 

convert proprietary formats into open formats, (ii) Noise reduction and contrast enhancement 
by applying Gaussian blur filtering for general noise removal and enhancing image contrast 
(Figure 5c), and (iii) Binarization for contour detection using the Isodata algorithm (van der Walt 
et al., 2014) to automatically determine a threshold value that separates the imprint from the 

background pixels (Figure 5d). 

The analysis stage includes two steps: (i) Contour extraction using a ‘marching squares’ 
algorithm implementation from the scikit-image library (van der Walt et al., 2014) to trace 

imprint boundaries (Figure 5e). (ii) Area calculation by estimating the size of each contour 
by counting enclosed pixels and converting pixel-based areas into physical units using 

the pixel size obtained during file reading. Researcher II repeats this workflow for each 

confocal micrograph. 
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9 At the final stage, Researcher II annotates the Jupyter Notebook with metadata describing 

the workflow steps, saves the computed projected contact areas as comma-separated value 

(CSV) files for further analysis (see section 3.1), and uploads data files to GitLab and Coscine 

repositories for sharing with other Researchers (section 3.4). 

Figure 5 (a) Chaldene image 
processing workflow 
represented as a series of 
interconnected nodes 
(rectangles) linked by edges 
(lines). The nodes correspond 
to key processing stages: data 
ingestion, Gaussian blur, 
enhancement, binarization, 
and physical area evaluation. 
(b–e) Confocal microscopy 
images illustrating different 
stages of the workflow: (b) raw 
light reflection, (c) raw height 
profile, (d) binarized image 
using the Isodata algorithm, 
and (e) binary image contour. 

3.3 COMPUTATIONAL WORKFLOW IN pyiron 

The simulation workflow, carried out from the perspective of Researcher III, is illustrated in 

Figure 6. At the preprocessing stage, Researcher III selects parameters for rapid prototyping 

of the simulation workflow using Jupyter Notebooks as an interactive environment in pyiron. 
The composed workflow can later be scaled up for execution on multi-core processors or 
high-performance computing (HPC) clusters. During the next stage, Researcher III performs 
molecular statics simulations using the Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) to estimate the elastic constants. This stage consists of three steps: 
(i) Supercell creation to construct an Al face-centered cubic (FCC) supercell with 5324 atoms 
(Figure 7) substitutional impurities added to match the composition of EN AW-1050A (0.2 wt.% 

Si, 0.2 wt.% Fe, 0.05 wt.% Cu, and 0.05 wt.% Mg), (ii) Interatomic Potential Selection, here 

using a modified Embedded Atom Method (EAM) potential (Jelinek et al., 2012), optimized for 
this alloy system and ensuring alignment with density functional theory (DFT) calculations for 
elastic constants of the pure elements and their binary combinations, and (iii) Elastic Tensor 
Calculation by optimizing the structure with respect to cell parameters and atomic positions, 
applying small deformations (maximum Lagrangian strain of 0.001) considering the structure’s 
space group. Forces and stresses are recorded to calculate elastic constants. All the workflow 

steps are annotated with metadata to ensure reproducibility and stored in a Jupyter Notebook. 

Figure 6 Simulation workflow 
as a part of the user journey, 
illustrating the perspective of 
Researcher III, who uses pyiron 
as the computational 
framework. The workflow 
comprises five main tasks— 
initiation, preprocessing, 
simulation execution, data 
management, and 
output—each with associated 
subtasks that connect to other 
researchers, the pyiron 
software, and its database. 
The entire workflow is 
implemented within a Jupyter 
Notebook. 
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At the final stage, Researcher III saves workflow inputs, outputs, and results in HDF5 files, 
extracts key results into CSV files for sharing with other Researchers, and uploads the workflow, 
software versions, and HDF5 data files to repositories (section 3.4). 

Figure 7 (a) Supercell of Al 
atoms used in the molecular 
statics simulation, with 
randomly placed impurity 
atoms. The [111] planes of 
the FCC structure are visible 
along the viewing direction. 
(b) Jupyter Notebook snippet 
from the simulation workflow, 
highlighting the creation of the 
supercell during preprocessing 
and the inclusion of impurity 
atoms. 
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3.4 METADATA AND STORAGE (EXTERNAL RDM WORKFLOW) 

The external data management workflow encompasses the handling of (meta)data beyond 

the scientific workflows (Figure 8). It primarily focuses on the RDM Agent’s role in enabling 

Researcher personas to use storage services, aligned metadata descriptions, and populate a 

knowledge graph. 

Figure 8 External data 
management workflow as a 
part of the user journey. The 
workflow comprises four main 
tasks—initiation, data upload 
support, metadata alignment, 
and publication within a 
knowledge graph—along with 
PIDs of the repository entries. 
Subtasks connect Researchers, 
repositories, and the 
knowledge graph. 

In the project planning phase, the RDM Agent sets up project instances in Coscine and GitLab 

repositories. Once the repositories are established, the RDM Agent sends sign-up invitations to 

Researchers and assigns roles based on their respective tasks. For Coscine projects, the RDM 

Agent also submits an application to request a specific storage quota. 

During scientific workflow execution, Researchers upload data and metadata files either via 

a GitLab merge request, approved by the RDM Agent, or directly into pre-created Coscine 

resources. Each project is assigned a PID, and a corresponding resource is created in Coscine. 
Additionally, every Coscine resource requires an appropriate application profile, serving a 

metadata schema in a tabular form, which Researchers must manually complete upon 

data upload. By default, the base application profile—derived from the DataCite metadata 

schema Kernel 4.0 (DataCite Metadata Working Group, 2016)—is used, containing fundamental 
metadata fields: Title, Creator, Creation Date, Subject Area, and Type. 



11 The outputs from all three workflows are uploaded to RDS-S3 object-based resources (Tsybenko 

et al., 2023a), while simulation workflow data is imported directly from Tsybenko et al. (2023b). 
This ensures that all data receives a PID and is annotated with additional metadata. 

To ensure semantic consistency across the three scientific workflows and support the FAIR 

principles, the RDM Agent unifies metadata annotations and formats (Appendix). Experimental 
workflow metadata is automatically exported as a structured JSON-LD and bundled with 

data files in a single RO-Crate archive. Computational workflow metadata is combined with 

analysis code in two Jupyter Notebooks, requiring manual extraction into a structured format. 
Metadata from domain-specific file formats is then converted into the standard machine-
and human-readable YAML Ain’t Markup Language (YAML) format using a template (MatWerk 

Ontology templates, 2024) provided by the RDM Agent (Figure 9a). At the same time, extracted 

descriptions from the YAML format are aligned with the MatWerk 2.0 Ontology, ensuring 

semantic harmonization and hierarchical organization of metadata. This alignment enhances 
interoperability across various materials science domains. 

In the final stage, the RDM Agent facilitates the publication of (meta)data, ensuring findability, 
accessibility, and reusability. Each published work includes the PID (Tsybenko et al., 2023a), 
improving traceability. Metadata is integrated into the MSE Knowledge Graph (Figure 9b), 
allowing instances, agents, and activities to be interconnected and discoverable via SPARQL 

queries. Published metadata includes licensing information, defining usage permissions. 

Figure 9 (a) A snippet of the 
YAML file with metadata from 
the computational workflow 
aligned with the MatWerk 2.0 
Ontology to highlight that the 
YAML format is beneficial for 
manual data entry and 
automatic processing. (b) The 
visualization of the triples that 
populated the MSE Knowledge 
Graph, which highlights the 
strongly interconnected 
metadata and the hierarchy of 
the node-structured data. 

4 LESSONS LEARNED 

The purpose of this section is to assess the Researchers’ experiences with FAIR software 

solutions and RDM Agents during scientific workflow execution. Based on identified limitations, 
we propose potential improvements for workflow optimization and software improvements. 
The scientific results of secondary interest are not discussed. 

Our evaluation concentrates on a single, well-characterized use case; accordingly, we do 

not claim exhaustive validation across the full range of materials-science environments. This 
focused choice enabled an in-depth exploration and critical analysis of a representative scenario 

within the constraints of the present study. We expect the approach to generalize for two 

principal reasons: (1) the methodology is modular and readily extensible by substituting 

specific tools or accommodating alternative workflows, and (2) the core tasks—experimental 
execution, data analysis, and simulation—are largely domain-agnostic and thus transferable 

across contexts. Nonetheless, systematic cross-domain validation, encompassing diverse 

subdomains, experimental configurations, and dataset scales, remains essential. In future 

work, we plan to benchmark the pipeline on at least two additional use cases and to report 
the corresponding lessons learned. 

4.1 GENERAL OUTCOMES 

Implementing the user journey provided valuable insights into the dynamics of collaborative 

research project and the impact of RDM software. This approach has proven highly effective 

for analyzing Researchers’ interactions with software tools, RDM Agents, and one another. 
From a long-term perspective, the published user journey serves as a blueprint for streamlined 
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12 FAIR data generation as it outlines the detailed steps necessary to integrate FAIR principles 
into research workflows. Additionally, the modular and accessible nature of the implemented 

workflows facilitates component reuse within the research community. 

This study highlights the essential role of NFDI MatWerk Consortium tools (PASTA-ELN, Chaldene, 
pyiron, Coscine, MatWerk Ontology, and the MSE Knowledge Graph) in solving scientific 

problems and generating FAIR data (Appendix A). Each tool adheres to multiple FAIR principles, 
promoting holistic and transparent research data management. Consequently, these tools 
contribute significantly to enhancing research practices, improving data quality and reusability, 
and fostering collaboration in materials science. 

Our analysis shows that Researchers rely heavily on RDM Agents, particularly for repository 

setup and metadata harmonization. In cases where no RDM Agent is available, Researchers 
often assume dual roles, leading to increased workloads and higher technical demands. Ideally, 
dedicated data stewards should fill these gaps. However, when unavailable, training programs 
on FAIR data concepts, available tools, and best practices could mitigate knowledge barriers. 
Overall, our findings indicate a strong commitment among Researchers to FAIR principles, 
ensuring the publication of FAIR data. 

The user journey examined advanced collaborative interactions between Researchers and 

various software solutions. The workflows reflected state-of-the-art scientific approaches, 
simulating a realistic research project. However, more complex workflows—involving iterative 

experiments or computation, modified approaches, or additional data requirements—could 

offer deeper insights into software scalability and adaptability. These scenarios should be 

explored in future implementations. 

After executing the workflow, we interviewed the scientists about the advantages and 

limitations of the software tools, as well as their interactions within the workflow. We found 

that no essential software tools were missing for this specific scientific workflow. However, we 

identified shortcomings in interoperability and feature availability. The limitations identified can 

lead to enhancements in future versions of the software tools. 

We identified limitations in interoperability and feature availability across the evaluated 

tools. In particular, the tools lack a common input/output file format that would enable 

non-programming users to export, read, and analyze data. For example, producing the 

final materials-science overview of elastic modulus versus normal force currently requires 
programming expertise because data from three distinct sources must be consolidated into 

a single figure. Future development should therefore enable the complete workflow to be 

executed without writing code. Achieving this objective will require adoption of a common data-
exchange format and, potentially, a standardized workflow-execution framework. Semantic 

web formats such as RDF offer rich machine-readable semantics that facilitate content 
discovery and interpretation, but they are not well-suited to packaging very large volumes 
of instrument or computational data. Conversely, FAIR digital-object containers such as RO-
Crate and the ELN file format support rich, machine-actionable semantic metadata, can 

accommodate multigigabyte datasets, and can explicitly encode inter-resource relationships. 
However, practical challenges remain—most notably cross-dataset linking and consistent 
semantic interpretation—which necessitate community conventions and interoperable tooling. 

4.2 EXPERIMENTAL WORKFLOW OUTCOMES 

Modeling a realistic experimental workflow naturally highlighted several recurring challenges 
in materials science. A key issue is that experimentalists are often constrained by proprietary 

instrument software, which can become obsolete, lack technical documentation, and hinder 
data provenance tracking. Researcher I encountered this limitation during the experimental 
indentation setup. To address it, Researcher I exported only raw data from the instrument and 

meticulously documented its origin within the PASTA-ELN project. 

Additionally, the collected data was stored in proprietary formats, preventing access by multiple 

software vendors and restricting parsing as raw text files. Consequently, experimental data 

analysis and metadata extraction depended on vendor-specific software. This issue was 
resolved by using the PASTA-ELN converter add-on, which converted the proprietary files into 

open formats, ensuring accessibility and interoperability. A potential improvement would be to 

include more metadata on file encoding formats during export. 
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13 Furthermore, automated metadata extraction upon file integration into the ELN project saved 

Researcher I considerable time compared to manual metadata entry. PASTA-ELN functionalities 
improved data structuring, retrieval, and sharing, allowing Researchers to focus on the scientific 

aspects. However, further workflow optimization could be achieved by introducing user-defined 

templates for experimental protocols. These templates should support efficient metadata input 
and automatically convert metadata into machine-readable formats. 

Proprietary nanoindentation and confocal microscopy instruments commonly produce data 

in vendor-specific file formats (e.g., HAP, LEXT), which introduces two principal problems for 
downstream analysis and long-term preservation. First, exporting to open formats via vendor-
supplied software can result in loss of metadata and a reduction in numeric precision (for 
example, some exports are limited to three significant digits), compromising data fidelity. 
Second, opaque proprietary files are frequently unreadable by standard analysis tools, impeding 

reuse and archival access. While LEXT files (a TIFF variant) can be interpreted by third-party 

readers such as Gwyddion, no public readers were available for HAP files; consequently, we 

developed a conversion utility to extract both primary data and associated metadata from 

HAP containers. Deciphering such closed formats, therefore, represents a substantial bottleneck 

in experimental workflows. To preserve provenance and support reproducibility, we retain 

both the original proprietary files and the converted open-format derivatives, and we validate 

conversions by comparing key numerical values and metadata fields between source and 

output. The conversion tool will be made available on request. Finally, we confirm that the 

datasets described contain no personal data; had personal data been present, appropriate 

anonymization and controlled-access procedures would have been implemented. These 

measures reduce risks to data integrity, privacy, and intellectual property while acknowledging 

the ongoing challenges posed by opaque proprietary formats. 

4.3 COMPUTATIONAL WORKFLOWS 

While molecular statics calculations are common in computational materials science, they 

remain challenging due to the need to select structures, apply strains, compute forces and 

stresses, and postprocess results. Researcher III faced these challenges when using different 
software tools. To simplify this process, pyiron provides built-in routines, allowing users to 

focus only on defining structure and strain ranges, significantly improving reproducibility. 
Additionally, directory structures are automatically created and managed, while metadata is 
stored alongside the workflow, enhancing reusability and transparency. 

A major challenge in computational research is the lack of workflow standardization. While both 

pyiron and Chaldene use Jupyter Notebooks and Python, they are not inherently interoperable, 
making it difficult for Researchers to reuse code. Existing standards such as Common Workflow 

Language (CWL) and Nextflow provide some workflow standardization, but they do so at the 

expense of Python’s object-oriented flexibility and rapid prototyping capabilities. 

Currently, pyiron allows exporting Python code as a pyiron workflow, but this requires extra 

effort from Researchers. A more efficient solution would be a generic Python-based workflow 

description that is semantically interoperable across pyiron, Chaldene, and potentially other 
platforms such as PASTA-ELN. 

Another challenge is that workflow input/output keywords are often domain-specific, making 

them difficult to interpret outside specialized fields. A potential solution is to incorporate 

terminology services or ontologies that define key terms, improving workflow clarity and FAIR 

compliance. Additionally, metadata records should include details on authors, institutions, 
and software dependencies. While the manual metadata extraction and alignment with 

the MatWerk Ontology partially address this issue, further improvements are needed 

(see section 4.4). 

4.4 METADATA AND ONTOLOGY 

Human- and machine-readable metadata are essential for enhancing the findability, 
interoperability, and reusability of research data. However, data complexity and heterogeneity 

pose challenges for accurate metadata recording. In this study, ELN exported files from 

experiments and Jupyter Notebooks from computational studies contained research data, 
workflows, analysis results, and documentation. While manual metadata entry using a 
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Automated metadata extraction tools should be developed and integrated into user-facing 

software to address this issue. 

The MSE Knowledge Graph serves as a centralized resource for querying domain knowledge, 
improving resource visibility and accessibility. However, populating the knowledge graph 

currently requires manual input. Implementing automated metadata harvesting from 

repositories and storage services would significantly enhance efficiency. 

While the MatWerk Ontology helps harmonize metadata and improve findability and 

interoperability, it lacks domain-specific terminology, which is essential for precise concept 
definitions. A viable solution is to combine high-level ontology alignment with detailed, domain-
specific metadata, ensuring that workflows are understandable beyond specific research 

domains. Recent efforts to develop materials science semantic artifacts could further support 
ontology integration (MatPortal: the ontology repository for materials science, 2024). 

5 CONCLUSIONS 

This study implemented a user journey simulating a realistic collaborative research project, 
integrating three scientific workflows and an external data management workflow. The results 
demonstrate how NFDI-MatWerk Consortium tools—PASTA-ELN, Chaldene, pyiron, Coscine, the 

MatWerk Ontology, and the MSE Knowledge Graph—enable transparent, reproducible research 

data management. Additionally, the findings emphasize the critical role of RDM Agents in 

providing technical support and ensuring adherence to FAIR principles. 

While this work highlights the benefits of integrating RDM software, challenges remain, 
particularly in handling proprietary data formats, ensuring computational workflow interoperability, 
and streamlining metadata entry. Future improvements should prioritize standardizing 

workflows across platforms and integrating domain-specific terminology services. These 

advancements will enhance the FAIRness, transparency, and efficiency of scientific workflows 
and large-scale projects beyond the specific workflow examined in this study. 

APPENDIX 

Table A1 Description of the FAIR data principles implementation in the finalized datasets published in GitLab and Coscine repositories. 

FAIR DATA PRINCIPLES DESCRIPTION OF IMPLEMENTATION 

F1. (Meta)data are assigned a globally 
unique and persistent identifier 

All the Coscine resources with uploaded (meta)data files are automatically assigned with an 
identifier that is globally unique and persistent. The registry service responsible for assigning and 
resolving the PIDs of digital objects is the Handle.Net Registry (HNR). 

F2. Data are described with rich metadata The metadata files are bundled with the data files and contain the resources’ descriptions 
(discipline, funding project, title, publication date, etc.). The files are in human- and 
machine-readable YAML format, which improves the findability of the resources. 

F3. Metadata clearly and explicitly include 
the identifier of the data they describe 

The metadata files include the PID URL to the Coscine resources they are referring to as well as the 
URL to the location of the resource within the GitLab repository. 

F4. (Meta)data are registered or indexed in 
a searchable resource 

The visibility of the Coscine project and the resources is set to ‘public’, therefore, the files are listed 
in a Coscine-wide search for the appropriate (meta)data. The project can also be searched for in 
the GitLab repository.  In addition, the (meta)data can be discovered by SPARQL-querying of the 
MSE Knowledge Graph. 

A1. (Meta)data are retrievable by their Users can use the contact form (available via PID URL) to obtain permission from the project 
identifier using a standardized owner and access the (meta)data of the Coscine resources. The (meta)data are also publicly 
communications protocol available on GitLab. In both cases, the (meta)data are retrievable through HTTP(S). 

A1.1 The protocol is open, free, and The http(s) is free and open and can be implemented globally to retrieve the (meta)data. 
universally implementable 

A1.2 The protocol allows for an Coscine Users can authenticate to search for the project-specific (meta)data. Authentication and 
authentication and authorization authorization are not required to access the GitLab project and the related (meta)data. 
procedure, where necessary 

A2. Metadata are accessible, even when The assigned PIDs of the Coscine resources allow the metadata to be long-term accessed. 
the data are no longer available 
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FAIR DATA PRINCIPLES DESCRIPTION OF IMPLEMENTATION 

I1. (Meta)data use a formal, accessible, The metadata stored in the YAML files is aligned at the top level to the MatWerk 2.0 Ontology, 
which uses a formal knowledge representation language OWL. The MatWerk Ontology 
specification is published online and is accessible to the community. 

shared, and broadly applicable language 
for knowledge representation. 
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I2. (Meta)data use vocabularies that The MatWerk Ontology aims to follow FAIR principles. For instance, its classes and properties have 
globally unique and persistent identifiers (IRIs) that can be resolved using a standardized 
communication protocol (HTTP(S)), and it uses a formal, accessible, shared, and broadly applicable 
language for knowledge representation OWL. 

follow FAIR principles 

I3. (Meta)data include qualified references Metadata files include meaningful links to other related entities, such as applied ontology for 
metadata descriptions, affiliated organizations and authors, as well as the applied software 
package. 

to other (meta)data 

R1. (Meta)data are richly described with a The metadata clearly describes the content of the data. It includes license information under 
which data can be reused and information about the data creation context. plurality of accurate and relevant 

attributes 

R1.1. (Meta)data are released with a clear The (meta)data includes usage rights information (BSD 3-Clause License for the source code and 
Creative Commons Attribution 4.0 International License for other (meta)data). and accessible data usage license 

R1.2. (Meta)data are associated with The provenance metadata in YAML files includes the authorship information, date of creation, 
employed scientific methods, applied software, and instruments. In addition, the ELN file includes 
the descriptions of instruments and procedures in the experimental workflow, whereas the 
Jupyter Notebooks contain simulation workflow descriptions. 

detailed provenance 

R1.3. (Meta)data meet domain-relevant The dataset contains files in well-established formats common in materials science projects, for 
example, MD, CSV, HDF5, GWY. The datasets are organized as data and metadata bundles. The 
metadata files use the templates for standard descriptions and are all aligned to the MatWerk 
Ontology, which represents the research activities in Materials Science. 

community standards 

GLOSSARY 

General terms 

• Alloy: A metal composed of two or more chemical elements that form a single or 
multiphase system with distinct properties. 

• Confocal microscopy: An optical imaging technique that acquires high-resolution, 
three-dimensional surface topography. 

• Crystal plane [111]: A crystallographic plane identified by Miller indices (1,1,1); in many 

face-centered cubic metals this plane is associated with prominent slip. 

• Elasticity: Reversible deformation in which the material returns to its original shape upon 

removal of the applied load. 

• Face-centered cubic (FCC): A metallic crystal structure in which atoms occupy the corners 
and face centers of the cubic unit cell. 

• Impurity atoms/substitutional impurities: Chemical elements present at low 

concentrations that occupy lattice sites of the host metal. 

• Nanoindentation: An experimental technique for measuring mechanical properties by 

driving a rigid probe (often a diamond tip) into a specimen. 

• Plasticity: Permanent, non-recoverable deformation that remains after removal of the 

applied load, arising from mechanisms such as dislocation motion. 

• Tip area function: A mathematical description relating the contact depth of the probe or 
tip to the projected contact area. 

• Weight percent (wt.%) composition (e.g., 99.5 wt.% Aluminum): Mass fraction expressed 

as a percentage (e.g., 99.5 wt.% Al indicates 99.5 mass percent aluminum in the alloy). 

Simulation terms 

• Density functional theory (DFT): A quantum mechanical method for computing 

ground-state electronic structure and derived properties. 

• Embedded Atom Method (EAM) potential/interatomic potential: A class of semi-empirical 
many-body potentials used to model metallic bonding. 

• Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS): An open-source, 
parallel molecular dynamics simulation package for atomistic modeling. 
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• Molecular statics/molecular statics simulations: An energy-minimization simulation in 

which atomic positions are relaxed to local minima. 

• Supercell/supercell creation: Construction of a periodically repeated simulation cell 
containing multiple unit cells (and any defects or solute atoms). 

Mechanics of materials 

• Contact area: The projected area of physical contact between the indenter and the 

specimen surface during indentation. 

• Elastic constants/elastic modulus/Elastic tensor: Quantities that relate stress to the elastic 

strain in the material. 

• Hardness: A measure of resistance to plastic deformation, defined as the maximum 

applied load divided by the projected contact area. 

• Oliver–Pharr method: A widely used analysis procedure for instrumented indentation data 

that extracts hardness and the reduced elastic modulus. 

• Strain: A measure of relative deformation of the material defined as the change in length 

(or displacement) normalized by the original dimension. 

• Stresses: Internal forces distributed over a certain area within a material arising from 

externally applied loads or constraints. 

File formats 

• CSV: Comma-separated values, a simple, open, text-based tabular data exchange format. 

• GWY: File format used by Gwyddion and some instruments for surface topography data; 
an open format. 

• HAP: Proprietary data format of nanoindentation equipment by the company Fischer. 

• HDF5: Hierarchical Data Format version 5, a portable, self-describing binary format. 

• MD: Generic designation for molecular dynamics input or data files. 
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