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Abstract

Summary: "*C-based metabolic flux analysis is a cornerstone of quantitative systems biology, yet its increasing data complexity and methodological diver-
sity place high demands on simulation software. We introduce 13CFLUX(V3), a third-generation simulation platform that combines a high-performance
C+-+ engine with a convenient Python interface. The software delivers substantial performance gains across isotopically stationary and nonstationary analy-
sis workflows, while remaining flexible to accommmodate diverse labeling strategies and analytical platforms. Its open-source availability facilitates seamless
integration into computational ecosystems and community-driven extension. By supporting multi-experiment integration, multi-tracer studies, and advanced
statistical inference such as Bayesian analysis, 13CFLUX provides a robust and extensible framework for modern fluxomics research.

Availability and implementation: Sources and containers are provided at https://jugit.fz-juelich.de/IBG-1/ModSim/Fluxomics/13CFLUX, and
scripts to replicate results in the supplementary data at https://github.com/JuBiotech/Supplement-to-Stratmann-et-al.-Bioinformatics-2025.

1 Introduction

Intracellular metabolic reaction rates (fluxes) at steady state
are crucial for understanding cellular metabolism quantita-
tively. To determine fluxes in living cells, a computational ap-
proach is required, where unknown fluxes are inferred from
data using metabolic models. Of all fluxomics techniques,
13C-based metabolic flux analysis (MFA) is considered the
most informative. '*C-MFA utilizes data from isotope label-
ing experiments (ILE) and external rate measurements to esti-
mate fluxes and their uncertainties within the context of
metabolic networks (Niedenfiihr et al. 2015). This technol-
ogy is well-established in metabolic engineering, bioprocess
engineering, and health research, enabling the characteriza-
tion of microbes (Long and Antoniewicz 2019), plants (Xu
et al. 2022), and mammalian cells (Hogg et al. 2023).
Advances in experimental-analytical techniques have led to
various extensions of '*C-MFA. For instance, integrating data
from multiple isotopically stationary (IST) ILEs, either from
the same or different analytical platforms (Rahim et al. 2022),
or the integration with genome-scale models (McCloskey et al.
2016b), has enhanced the information gain. Developing case-
specific labeling strategies (Borah Slater et al. 2023, Mitosch
et al. 2023) and mass spectrometry methods (McCloskey et al.
2016a, Kappelmann ez al. 2019) have further expanded the
scope of '3C-MFA (Gopalakrishnan and Maranas 2015,
McCloskey et al. 2016b), while the miniaturization and auto-
mation of ILEs on robotic platforms have improved their eco-
nomic feasibility (Fina et al. 2023). When combined with

rapid quenching protocols, the label incorporation into intra-
cellular metabolites is trackable in small-scale bioreactor sys-
tems such as the BioLector (NiefSer et al. 2022), paving the
way for a broader applicability of isotopically nonstationary
(INST) *C-MFA (N6h et al. 2006). These developments have
broadened the application of '*C-MFA, but they have also
raised the bar for the robustness and reliable performance of
the computational '*C-MFA toolset.

The evaluation workflow of '*C-MFA consists of three
main steps: experimental design, parameter fitting/optimiza-
tion, and statistical analysis/uncertainty quantification
(Zamboni et al. 2009, Long and Antoniewicz 2019). To ad-
dress these steps, numerous methodological developments
have emerged, including robust algorithms for ILE design
(BeyfS et al. 2021), fast nonlinear optimization (Lugar and
Sriram 2022), and high-throughput machine learning strate-
gies (Wu et al. 2022). The classical statistical toolkit has been
enriched by Bayesian approaches (Theorell et al. 2017,
Backman et al. 2023), allowing researchers to address exist-
ing questions and tackle new ones (Theorell et al. 2024).
Consequently, the configuration of '*C-MFA workflows has
become increasingly diverse and computationally demanding.
Therefore, it is essential that '3C-MFA software supports the
flexible composition of analysis workflows to appropriately
address the research question at hand while also being
streamlined for computational efficiency.

The simulation step is the foundational centerpiece of any
evaluation workflow, because it generates isotope labeling
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data given a metabolic model including atom transitions, pa-
rameter values, and a measurement configuration. Reliable
and fast simulation of the labeling data enables addressing
novel types of questions, such as the impact of model uncer-
tainty on the estimated fluxes (Theorell e al. 2024). Several
13C-MFA software packages are available (Section 4, avail-
able as supplementary data at Bioinformatics online for a se-
lection). These use different flux coordinate systems and
state-space representations, such as the prominent cumomers
or elementary metabolite units (EMU), which determine the
properties of the wunderlying mathematical equations.
However, none of these tools cover the full range of now-
possible applications, including isotopic stationary and non-
stationary '*C-MFA variants with various measurement con-
figurations and multi-isotopic tracers, nor do they select the
numerically most beneficial state-space representation. Also,
these tools rarely offer the flexibility to accommodate new fit-
ting, statistical, or experimental design approaches.

The open high-performance simulator 13CFLUX (v3) sup-
ports the full range of now possible '*C-MFA scenarios, in-
cluding INST. Its universality is based on the ability to
simulate any desired labeling state of any metabolite within a
given model for any input labeling and at any point in time
(including #=o0c). 13CFLUX (v3) builds on the universal
flux modeling language FluxML (Beyf$ et al. 2019), and
improves upon the performance of its predecessor 13CFLUX2
(Weitzel et al. 2013), extending it to INST. Its ground-up
new software architecture enables extensible and scalable
analyses, facilitating workflow automation, empowering
researchers to tackle complex biological questions and
applications.

2 Approach and implementation

2.1 Software architecture

The 13CFLUX (v3) architecture integrates a C++ simulation
backend with a Python frontend for performance and to con-
veniently leverage third-party Python libraries like NumPy,
SciPy, or Matplotlib (Fig. 1A). This cross-language ap-
proach, realized using pybind11l (ver. 3.0.1), compiles the
backend and Python bindings into shared libraries accessible
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to all actively supported Python interpreters (vers. 3.9-13).
Advanced exception handling ensures that error and warning
messages are passed from the C++ backend to Python.

Loading a FluxML file in Python creates a simulator object
consisting of the dimension-reduced underlying isotope label-
ing system and data structures tailored to the given *C-MFA
model. This object provides access to simulated labeling data,
parameter sensitivities, residuals (variance-weighted differ-
ence between simulated and measured data), and gradients,
aiding system analysis and flux estimation.

Compared to 13CFLUX2, the C++ code has been fully
refactored, e.g. by replacing custom matrix/vector operations
with those provided by Eigen (ver. 3.4), thereby reducing
the lines of code (LOC) from over 130 000 to <15 000
(Section 3.1, available as supplementary data at
Bioinformatics online). This, along with unit testing, enhan-
ces maintainability and software quality. The code is written
in C++17 (ISO/IEC 14882) and compiled with standard
tools like GCC or Clang to highly optimized machine code.
CMake (vers. 3.15-4.1) manages compilation and testing.
13CFLUX (v3) is deployable as a Python package/wheel e.g.
from the Python Package Index (x3cflux) or as a Docker
container, providing a ready-to-use environment.

2.2 C++ simulation backend

Battle-proven algorithms are key for achieving simulation
performance with high degree of application universality.
13CFLUX (v3) features two universal state-space representa-
tions of isotopic labeling, namely cumomers (Wiechert 2001)
and EMUs (Antoniewicz et al. 2007). For a FluxML model, a
topological graph analysis and decomposition of the
cumomer/EMU isotope labeling balance equations produces
dimension-reduced state-spaces [i.e. essential cumomers or
EMUs (Weitzel et al. 2007)]. A heuristic maximizes the re-
duction by automatically deciding the formulation (Section
2.4.1, available as supplementary data at Bioinformatics on-
line). The dimension-reduced labeling systems take the form
of nonlinearly coupled “cascaded” systems (Section 1.1,
available as supplementary data at Bioinformatics online),
which, depending on the data type, reduce to either algebraic
equation systems (AE; IST) or ordinary differential equation
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Figure 1. (A) 13CFLUX(v3) supports flexible, scalable workflows through a high-level Python API that interfaces with the high-performance C++
simulation backend; containerization ensures portability. (B) Performance comparison (single-core) of INST simulation wall clock time for low-, mid-, and
high-accuracy calculations (*: numerical accuracy uncontrollable, see Section 5.2, available as supplementary data at Bioinformatics online). Mean and
standard deviation over 100 repetitions. (C) Speed-up of 13CFLUX(v3) versus 13CFLUX2 for simulating multiple IST ILEs.
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High-performance "*C-MFA engine 13CFLUX

systems (ODE; INST). Typical system sizes exceed 1000
dimensions (Section 1.2, available as supplementary data at
Bioinformatics online).

Taking advantage of the systems’ sparsity, the AEs are
solved using sparse LU factorization via Gaussian elimination
with the SparseLU algorithm from Eigen. The SUNDIALS
suite (ver. 6.6) is used to solve the INST ODFEs. In particular,
we use a customized version of CVODE, a A(a)- and L(a)-sta-
ble multistep Backward Differentiation Formula (BDF)
method with step size and order-control, which is suitable for
(non)stiff ODE integration (L-stability is beneficial as it is ro-
bust for integrating stiff ODEs even for large step sizes). The
linear system characteristics of the AEs underlying the BDF
schemes is leveraged through replacing the iterative GMRES
algorithm by a 1-step SparseLU factorization (Section 2.1,
available as supplementary data at Bioinformatics online).
Besides CVODE, an L-stable single-step singly diagonally im-
plicit Runge-Kutta method is implemented. All ODE integra-
tors implement adaptive step size control (Section 2.2,
available as supplementary data at Bioinformatics online), re-
quired in all settings where parameter values or design varia-
bles vary unpredictably, such as flux estimation or
experimental design. Numerical accuracy is validated by com-
parison with analytical and reference solutions (Section 2.3,
available as supplementary data at Bioinformatics online). The
AE/ODE labeling systems and their analytically derived sensi-
tivity systems are solved with the same solvers, enhanced by
multi-threaded shared memory parallelization via OpenMP
(vers. 3.0+), which exploits the independence of the sensitivity
systems. Labeling states for sets of isotopically labeled sub-
strates, under the same or different measurement configura-
tions, are computed through low-level optimization of the
associated AE/ODE systems (Section 1.3, available as supple-
mentary data at Bioinformatics online).

2.3 Flexible "*C-MFA workflows

A key goal in developing 13CFLUX (v3) was to enable repro-
ducible (automatable, portable), scalable, and transparent
workflows without requiring extensive coding expertise. To
this end, we adopted an object-oriented approach that
abstracts the internal state-space representation and encapsu-
lates the dimension-reduced model in a polymorphic simula-
tor object (Section 2.1). This allows users to specify model
parameters (fluxes, pool sizes) and simulation variables (solv-
ers, accuracy, etc.), and to configure tasks like multi-start pa-
rameter fitting with minimal code via a high-level Python
API. For example, multi-start fitting requires a single LOC
and switching to a third-party optimizer involves only two
changes (Section 3.2, available as supplementary data at
Bioinformatics online). This design balances ease of use with
flexibility, supporting the integration of external algorithms
and enabling the setup of automated production workflows,
e.g. via powerful workflow orchestration platforms such as
Apache Airflow (https://airflow.apache.org/, Section 7,
available as supplementary data at Bioinformatics online).
Documentation and Jupyter notebooks provide templates
for both standard and advanced workflows. 13CFLUX (v3)
also issues expressive error messages and warnings at seman-
tic, syntactic, logic, and numeric levels (Section 3.3, available
as supplementary data at Bioinformatics online). Portability
is supported through Docker containerization, which decou-
ples workflow development from compute resources. This

facilitates reproducible and scalable execution, from laptops
to high-performance clusters.

3 Results

We demonstrate the utility of 13CFLUX (v3) via benchmarks
against state-of-the-art (SOTA) simulators and, for the first
time, Bayesian uncertainty quantification in INST '*C-MFA.

3.1 Performance benchmark

Benchmarking '*C-MFA simulations includes consideration
of the model, measurement configuration (affecting the de-
gree of dimension reduction), state-space representation
(Section 2.2), and solver accuracy (specific to INST). We
compared the simulation wall clock times of 13CFLUX (v3)
with three SOTA simulators (FreeFlux, INCA, influ-
x_si) for two organisms using published models [E. coli
(EC) (Young 2014), Synechocystis sp. PCC6803 (Syn) (Wu
et al. 2023)], two measurement configurations (a, b), and dif-
ferent accuracies (see Section 8, available as supplementary
data at Bioinformatics online for details of the models).
Figure 1B and the results in Section 5, available as supple-
mentary data at Bioinformatics online, show that 13CFLUX
(v3) outperforms the other tools in all categories by far. In
addition, 13CFLUX (v3) facilitates scalable simulations of
multiple data and parameter sets, achieving runtimes that are
~40 times faster than those of 13CFLUX2 (Fig. 1C). This fac-
tor extends to Jacobian computations and significantly
speeds up the evaluation of tracer designs (Section 2.4.2,
available as supplementary data at Bioinformatics online).

3.2 Unlocking Bayesian INST '*C-MFA

Bayesian approaches have recently complemented the statisti-
cal toolkit for classical '>*C-MFA (Theorell et al. 2017,
Backman ef al. 2023, Hogg et al. 2023), but long simulation
times have hindered their application to Bayesian INST "*C-
MFA so far. Leveraging the performance of 13CFLUX (v3)
together with efficient MCMC algorithms for linearly con-
strained problems, we demonstrate, to our knowledge, the
first Bayesian inference for INST '*C-MFA. We implemented
a Python workflow that uses 13CFLUX (v3) as the simula-
tion engine and uses the specialized library hopsy for
MCMC sampling (Paul er al. 2024). Due to its high-level
Python API, integration of the two packages requires only 20
LOCs, with the full analysis workflow implemented under
300 LOCs (Section 6.1, available as supplementary data at
Bioinformatics online). The workflow was containerized
with Docker and executed on an HPC cluster. Exemplary
posterior probability distributions along with further analysis
details are provided in Section 6.2, available as supplemen-
tary data at Bioinformatics online.

4 Conclusion

The new simulation engine 13CFLUX (v3) handles the full
spectrum of '*C-MFA scenarios, spanning IST and INST
analyses, multi-experiment setups, multi-isotope tracers and
complex measurement configurations. Its C++ simulation
core ensures efficiency and reliability, while the Python API
enables seamless interaction with advanced data analysis
tools, workflow customization and automation, thereby sup-
porting both current and future research needs. By uniting
performance, reliability, flexibility and openness, 13CFLUX
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(v3) establishes a sustainable platform for '>C-MFA,
empowering researchers to study complex biological systems
and integrate comprehensive datasets to gain quantitative in-
sight into metabolic processes.
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