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Abstract
Summary: 13C-based metabolic flux analysis is a cornerstone of quantitative systems biology, yet its increasing data complexity and methodological diver
sity place high demands on simulation software. We introduce 13CFLUX(v3), a third-generation simulation platform that combines a high-performance 
Cþþ engine with a convenient Python interface. The software delivers substantial performance gains across isotopically stationary and nonstationary analy
sis workflows, while remaining flexible to accommodate diverse labeling strategies and analytical platforms. Its open-source availability facilitates seamless 
integration into computational ecosystems and community-driven extension. By supporting multi-experiment integration, multi-tracer studies, and advanced 
statistical inference such as Bayesian analysis, 13CFLUX provides a robust and extensible framework for modern fluxomics research.
Availability and implementation: Sources and containers are provided at https://jugit.fz-juelich.de/IBG-1/ModSim/Fluxomics/13CFLUX, and 
scripts to replicate results in the supplementary data at https://github.com/JuBiotech/Supplement-to-Stratmann-et-al.-Bioinformatics-2025.

1 Introduction
Intracellular metabolic reaction rates (fluxes) at steady state 
are crucial for understanding cellular metabolism quantita
tively. To determine fluxes in living cells, a computational ap
proach is required, where unknown fluxes are inferred from 
data using metabolic models. Of all fluxomics techniques, 
13C-based metabolic flux analysis (MFA) is considered the 
most informative. 13C-MFA utilizes data from isotope label
ing experiments (ILE) and external rate measurements to esti
mate fluxes and their uncertainties within the context of 
metabolic networks (Niedenf€uhr et al. 2015). This technol
ogy is well-established in metabolic engineering, bioprocess 
engineering, and health research, enabling the characteriza
tion of microbes (Long and Antoniewicz 2019), plants (Xu 
et al. 2022), and mammalian cells (Hogg et al. 2023).

Advances in experimental-analytical techniques have led to 
various extensions of 13C-MFA. For instance, integrating data 
from multiple isotopically stationary (IST) ILEs, either from 
the same or different analytical platforms (Rahim et al. 2022), 
or the integration with genome-scale models (McCloskey et al. 
2016b), has enhanced the information gain. Developing case- 
specific labeling strategies (Borah Slater et al. 2023, Mitosch 
et al. 2023) and mass spectrometry methods (McCloskey et al. 
2016a, Kappelmann et al. 2019) have further expanded the 
scope of 13C-MFA (Gopalakrishnan and Maranas 2015, 
McCloskey et al. 2016b), while the miniaturization and auto
mation of ILEs on robotic platforms have improved their eco
nomic feasibility (Fina et al. 2023). When combined with 

rapid quenching protocols, the label incorporation into intra
cellular metabolites is trackable in small-scale bioreactor sys
tems such as the BioLector (Nießer et al. 2022), paving the 
way for a broader applicability of isotopically nonstationary 
(INST) 13C-MFA (N€oh et al. 2006). These developments have 
broadened the application of 13C-MFA, but they have also 
raised the bar for the robustness and reliable performance of 
the computational 13C-MFA toolset.

The evaluation workflow of 13C-MFA consists of three 
main steps: experimental design, parameter fitting/optimiza
tion, and statistical analysis/uncertainty quantification 
(Zamboni et al. 2009, Long and Antoniewicz 2019). To ad
dress these steps, numerous methodological developments 
have emerged, including robust algorithms for ILE design 
(Beyß et al. 2021), fast nonlinear optimization (Lugar and 
Sriram 2022), and high-throughput machine learning strate
gies (Wu et al. 2022). The classical statistical toolkit has been 
enriched by Bayesian approaches (Theorell et al. 2017, 
Backman et al. 2023), allowing researchers to address exist
ing questions and tackle new ones (Theorell et al. 2024). 
Consequently, the configuration of 13C-MFA workflows has 
become increasingly diverse and computationally demanding. 
Therefore, it is essential that 13C-MFA software supports the 
flexible composition of analysis workflows to appropriately 
address the research question at hand while also being 
streamlined for computational efficiency.

The simulation step is the foundational centerpiece of any 
evaluation workflow, because it generates isotope labeling 
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data given a metabolic model including atom transitions, pa
rameter values, and a measurement configuration. Reliable 
and fast simulation of the labeling data enables addressing 
novel types of questions, such as the impact of model uncer
tainty on the estimated fluxes (Theorell et al. 2024). Several 
13C-MFA software packages are available (Section 4, avail
able as supplementary data at Bioinformatics online for a se
lection). These use different flux coordinate systems and 
state-space representations, such as the prominent cumomers 
or elementary metabolite units (EMU), which determine the 
properties of the underlying mathematical equations. 
However, none of these tools cover the full range of now- 
possible applications, including isotopic stationary and non
stationary 13C-MFA variants with various measurement con
figurations and multi-isotopic tracers, nor do they select the 
numerically most beneficial state-space representation. Also, 
these tools rarely offer the flexibility to accommodate new fit
ting, statistical, or experimental design approaches.

The open high-performance simulator 13CFLUX(v3) sup
ports the full range of now possible 13C-MFA scenarios, in
cluding INST. Its universality is based on the ability to 
simulate any desired labeling state of any metabolite within a 
given model for any input labeling and at any point in time 
(including t ¼1). 13CFLUX(v3) builds on the universal 
flux modeling language FluxML (Beyß et al. 2019), and 
improves upon the performance of its predecessor 13CFLUX2 
(Weitzel et al. 2013), extending it to INST. Its ground-up 
new software architecture enables extensible and scalable 
analyses, facilitating workflow automation, empowering 
researchers to tackle complex biological questions and 
applications.

2 Approach and implementation
2.1 Software architecture
The 13CFLUX(v3) architecture integrates a Cþþ simulation 
backend with a Python frontend for performance and to con
veniently leverage third-party Python libraries like NumPy, 
SciPy, or Matplotlib (Fig. 1A). This cross-language ap
proach, realized using pybind11 (ver. 3.0.1), compiles the 
backend and Python bindings into shared libraries accessible 

to all actively supported Python interpreters (vers. 3.9–13). 
Advanced exception handling ensures that error and warning 
messages are passed from the Cþþ backend to Python.

Loading a FluxML file in Python creates a simulator object 
consisting of the dimension-reduced underlying isotope label
ing system and data structures tailored to the given 13C-MFA 
model. This object provides access to simulated labeling data, 
parameter sensitivities, residuals (variance-weighted differ
ence between simulated and measured data), and gradients, 
aiding system analysis and flux estimation.

Compared to 13CFLUX2, the Cþþ code has been fully 
refactored, e.g. by replacing custom matrix/vector operations 
with those provided by Eigen (ver. 3.4), thereby reducing 
the lines of code (LOC) from over 130 000 to <15 000 
(Section 3.1, available as supplementary data at 
Bioinformatics online). This, along with unit testing, enhan
ces maintainability and software quality. The code is written 
in Cþþ17 (ISO/IEC 14882) and compiled with standard 
tools like GCC or Clang to highly optimized machine code. 
CMake (vers. 3.15–4.1) manages compilation and testing. 
13CFLUX(v3) is deployable as a Python package/wheel e.g. 
from the Python Package Index (x3cflux) or as a Docker 
container, providing a ready-to-use environment.

2.2 C++ simulation backend
Battle-proven algorithms are key for achieving simulation 
performance with high degree of application universality. 
13CFLUX(v3) features two universal state-space representa
tions of isotopic labeling, namely cumomers (Wiechert 2001) 
and EMUs (Antoniewicz et al. 2007). For a FluxML model, a 
topological graph analysis and decomposition of the 
cumomer/EMU isotope labeling balance equations produces 
dimension-reduced state-spaces [i.e. essential cumomers or 
EMUs (Weitzel et al. 2007)]. A heuristic maximizes the re
duction by automatically deciding the formulation (Section 
2.4.1, available as supplementary data at Bioinformatics on
line). The dimension-reduced labeling systems take the form 
of nonlinearly coupled “cascaded” systems (Section 1.1, 
available as supplementary data at Bioinformatics online), 
which, depending on the data type, reduce to either algebraic 
equation systems (AE; IST) or ordinary differential equation 

Figure 1. (A) 13CFLUX(v3) supports flexible, scalable workflows through a high-level Python API that interfaces with the high-performance Cþþ
simulation backend; containerization ensures portability. (B) Performance comparison (single-core) of INST simulation wall clock time for low-, mid-, and 
high-accuracy calculations (�: numerical accuracy uncontrollable, see Section 5.2, available as supplementary data at Bioinformatics online). Mean and 
standard deviation over 100 repetitions. (C) Speed-up of 13CFLUX(v3) versus 13CFLUX2 for simulating multiple IST ILEs.
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systems (ODE; INST). Typical system sizes exceed 1000 
dimensions (Section 1.2, available as supplementary data at 
Bioinformatics online).

Taking advantage of the systems’ sparsity, the AEs are 
solved using sparse LU factorization via Gaussian elimination 
with the SparseLU algorithm from Eigen. The SUNDIALS 
suite (ver. 6.6) is used to solve the INST ODEs. In particular, 
we use a customized version of CVODE, a AðαÞ- and LðαÞ-sta
ble multistep Backward Differentiation Formula (BDF) 
method with step size and order-control, which is suitable for 
(non)stiff ODE integration (L-stability is beneficial as it is ro
bust for integrating stiff ODEs even for large step sizes). The 
linear system characteristics of the AEs underlying the BDF 
schemes is leveraged through replacing the iterative GMRES 
algorithm by a 1-step SparseLU factorization (Section 2.1, 
available as supplementary data at Bioinformatics online). 
Besides CVODE, an L-stable single-step singly diagonally im
plicit Runge-Kutta method is implemented. All ODE integra
tors implement adaptive step size control (Section 2.2, 
available as supplementary data at Bioinformatics online), re
quired in all settings where parameter values or design varia
bles vary unpredictably, such as flux estimation or 
experimental design. Numerical accuracy is validated by com
parison with analytical and reference solutions (Section 2.3, 
available as supplementary data at Bioinformatics online). The 
AE/ODE labeling systems and their analytically derived sensi
tivity systems are solved with the same solvers, enhanced by 
multi-threaded shared memory parallelization via OpenMP 
(vers. 3.0þ), which exploits the independence of the sensitivity 
systems. Labeling states for sets of isotopically labeled sub
strates, under the same or different measurement configura
tions, are computed through low-level optimization of the 
associated AE/ODE systems (Section 1.3, available as supple
mentary data at Bioinformatics online).

2.3 Flexible 13C-MFA workflows
A key goal in developing 13CFLUX(v3) was to enable repro
ducible (automatable, portable), scalable, and transparent 
workflows without requiring extensive coding expertise. To 
this end, we adopted an object-oriented approach that 
abstracts the internal state-space representation and encapsu
lates the dimension-reduced model in a polymorphic simula
tor object (Section 2.1). This allows users to specify model 
parameters (fluxes, pool sizes) and simulation variables (solv
ers, accuracy, etc.), and to configure tasks like multi-start pa
rameter fitting with minimal code via a high-level Python 
API. For example, multi-start fitting requires a single LOC 
and switching to a third-party optimizer involves only two 
changes (Section 3.2, available as supplementary data at 
Bioinformatics online). This design balances ease of use with 
flexibility, supporting the integration of external algorithms 
and enabling the setup of automated production workflows, 
e.g. via powerful workflow orchestration platforms such as 
Apache Airflow (https://airflow.apache.org/, Section 7, 
available as supplementary data at Bioinformatics online).

Documentation and Jupyter notebooks provide templates 
for both standard and advanced workflows. 13CFLUX(v3) 
also issues expressive error messages and warnings at seman
tic, syntactic, logic, and numeric levels (Section 3.3, available 
as supplementary data at Bioinformatics online). Portability 
is supported through Docker containerization, which decou
ples workflow development from compute resources. This 

facilitates reproducible and scalable execution, from laptops 
to high-performance clusters.

3 Results
We demonstrate the utility of 13CFLUX(v3) via benchmarks 
against state-of-the-art (SOTA) simulators and, for the first 
time, Bayesian uncertainty quantification in INST 13C-MFA.

3.1 Performance benchmark
Benchmarking 13C-MFA simulations includes consideration 
of the model, measurement configuration (affecting the de
gree of dimension reduction), state-space representation 
(Section 2.2), and solver accuracy (specific to INST). We 
compared the simulation wall clock times of 13CFLUX(v3) 
with three SOTA simulators (FreeFlux, INCA, influ
x_si) for two organisms using published models [E. coli 
(EC) (Young 2014), Synechocystis sp. PCC6803 (Syn) (Wu 
et al. 2023)], two measurement configurations (a, b), and dif
ferent accuracies (see Section 8, available as supplementary 
data at Bioinformatics online for details of the models). 
Figure 1B and the results in Section 5, available as supple
mentary data at Bioinformatics online, show that 13CFLUX 
(v3) outperforms the other tools in all categories by far. In 
addition, 13CFLUX(v3) facilitates scalable simulations of 
multiple data and parameter sets, achieving runtimes that are 
�40 times faster than those of 13CFLUX2 (Fig. 1C). This fac
tor extends to Jacobian computations and significantly 
speeds up the evaluation of tracer designs (Section 2.4.2, 
available as supplementary data at Bioinformatics online).

3.2 Unlocking Bayesian INST 13C-MFA
Bayesian approaches have recently complemented the statisti
cal toolkit for classical 13C-MFA (Theorell et al. 2017, 
Backman et al. 2023, Hogg et al. 2023), but long simulation 
times have hindered their application to Bayesian INST 13C- 
MFA so far. Leveraging the performance of 13CFLUX(v3) 
together with efficient MCMC algorithms for linearly con
strained problems, we demonstrate, to our knowledge, the 
first Bayesian inference for INST 13C-MFA. We implemented 
a Python workflow that uses 13CFLUX(v3) as the simula
tion engine and uses the specialized library hopsy for 
MCMC sampling (Paul et al. 2024). Due to its high-level 
Python API, integration of the two packages requires only 20 
LOCs, with the full analysis workflow implemented under 
300 LOCs (Section 6.1, available as supplementary data at 
Bioinformatics online). The workflow was containerized 
with Docker and executed on an HPC cluster. Exemplary 
posterior probability distributions along with further analysis 
details are provided in Section 6.2, available as supplemen
tary data at Bioinformatics online.

4 Conclusion
The new simulation engine 13CFLUX(v3) handles the full 
spectrum of 13C-MFA scenarios, spanning IST and INST 
analyses, multi-experiment setups, multi-isotope tracers and 
complex measurement configurations. Its Cþþ simulation 
core ensures efficiency and reliability, while the Python API 
enables seamless interaction with advanced data analysis 
tools, workflow customization and automation, thereby sup
porting both current and future research needs. By uniting 
performance, reliability, flexibility and openness, 13CFLUX 
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(v3) establishes a sustainable platform for 13C-MFA, 
empowering researchers to study complex biological systems 
and integrate comprehensive datasets to gain quantitative in
sight into metabolic processes.
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