001048374 001__ 1048374
001048374 005__ 20251125153920.0
001048374 0247_ $$2doi$$a10.48550/ARXIV.2510.26662
001048374 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04589
001048374 037__ $$aFZJ-2025-04589
001048374 1001_ $$0P:(DE-Juel1)187583$$aWichmann, Tobias$$b0$$eFirst author$$ufzj
001048374 245__ $$aGiant orbital Zeeman effects in a magnetic topological van der Waals interphase
001048374 260__ $$barXiv$$c2025
001048374 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764081401_7063
001048374 3367_ $$2ORCID$$aWORKING_PAPER
001048374 3367_ $$028$$2EndNote$$aElectronic Article
001048374 3367_ $$2DRIVER$$apreprint
001048374 3367_ $$2BibTeX$$aARTICLE
001048374 3367_ $$2DataCite$$aOutput Types/Working Paper
001048374 500__ $$aBitte Postprint ergänzen
001048374 520__ $$aVan der Waals (vdW) heterostructures allow the engineering of electronic and magnetic properties by the stacking different two-dimensional vdW materials. For example, orbital hybridisation and charge transfer at a vdW interface may result in electric fields across the interface that give rise to Rashba spin-orbit coupling. In magnetic vdW heterostructures, this in turn can drive the Dzyaloshinskii-Moriya interaction which leads to a canting of local magnetic moments at the vdW interface and may thus stabilise novel 2D magnetic phases. While such emergent magnetic 'interphases' offer a promising platform for spin-based electronics, direct spectroscopic evidence for them is still lacking. Here, we report Zeeman effects with Landé $g$-factors up to $\approx230$ at the interface of graphene and the vdW ferromagnet Fe$_3$GeTe$_2$. They arise from a magnetic interphase in which local-moment canting and itinerant orbital moments generated by the non-trivial band topology of Fe$_3$GeTe$_2$ conspire to cause a giant asymmetric level splitting when a magnetic field is applied. Exploiting the inelastic phonon gap of graphene, we can directly access the buried vdW interface to the Fe$_3$GeTe$_2$ by scanning tunnelling spectroscopy. Systematically analyzing the Faraday-like screening of the tip electric field by the graphene, we demonstrate the tunability of the constitutional interface dipole, as well as the Zeeman effect, by tip gating. Our findings are supported by density functional theory and electrostatic modelling.
001048374 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001048374 536__ $$0G:(GEPRIS)443416235$$aDFG project G:(GEPRIS)443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie (443416235)$$c443416235$$x1
001048374 536__ $$0G:(GEPRIS)422707584$$aDFG project G:(GEPRIS)422707584 - SPP 2244: 2D Materialien – die Physik von van der Waals [Hetero-]Strukturen (2DMP) (422707584)$$c422707584$$x2
001048374 536__ $$0G:(GEPRIS)422213477$$aDFG project G:(GEPRIS)422213477 - TRR 288: Elastisches Tuning und elastische Reaktion elektronischer Quantenphasen der Materie (ELASTO-Q-MAT) (422213477)$$c422213477$$x3
001048374 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x4
001048374 588__ $$aDataset connected to DataCite
001048374 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001048374 650_7 $$2Other$$aFOS: Physical sciences
001048374 7001_ $$0P:(DE-Juel1)206983$$aSastges, Mirco$$b1$$ufzj
001048374 7001_ $$0P:(DE-Juel1)188290$$aJin, Keda$$b2$$ufzj
001048374 7001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b3
001048374 7001_ $$0P:(DE-Juel1)186680$$aSaunderson, Tom G.$$b4$$ufzj
001048374 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b5$$ufzj
001048374 7001_ $$0P:(DE-Juel1)187220$$aBoban, Honey$$b6$$ufzj
001048374 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b7$$ufzj
001048374 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, Lukasz$$b8$$ufzj
001048374 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b9$$ufzj
001048374 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b10$$ufzj
001048374 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b11$$ufzj
001048374 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b12$$eCorresponding author$$ufzj
001048374 773__ $$a10.48550/ARXIV.2510.26662
001048374 8564_ $$uhttps://arxiv.org/abs/2510.26662
001048374 8564_ $$uhttps://juser.fz-juelich.de/record/1048374/files/2510.26662v1.pdf$$yOpenAccess
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187583$$aForschungszentrum Jülich$$b0$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206983$$aForschungszentrum Jülich$$b1$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188290$$aForschungszentrum Jülich$$b2$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186680$$aForschungszentrum Jülich$$b4$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b5$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187220$$aForschungszentrum Jülich$$b6$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b7$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b8$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b9$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b10$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b11$$kFZJ
001048374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b12$$kFZJ
001048374 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001048374 9141_ $$y2025
001048374 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048374 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001048374 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001048374 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x2
001048374 980__ $$apreprint
001048374 980__ $$aVDB
001048374 980__ $$aUNRESTRICTED
001048374 980__ $$aI:(DE-Juel1)PGI-3-20110106
001048374 980__ $$aI:(DE-Juel1)PGI-1-20110106
001048374 980__ $$aI:(DE-Juel1)PGI-6-20110106
001048374 9801_ $$aFullTexts