% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Wichmann:1048374,
author = {Wichmann, Tobias and Sastges, Mirco and Jin, Keda and
Martinez-Castro, Jose and Saunderson, Tom G. and Go,
Dongwook and Boban, Honey and Lounis, Samir and Plucinski,
Lukasz and Ternes, Markus and Mokrousov, Yuriy and Tautz, F.
Stefan and Lüpke, Felix},
title = {{G}iant orbital {Z}eeman effects in a magnetic topological
van der {W}aals interphase},
publisher = {arXiv},
reportid = {FZJ-2025-04589},
year = {2025},
note = {Bitte Postprint ergänzen},
abstract = {Van der Waals (vdW) heterostructures allow the engineering
of electronic and magnetic properties by the stacking
different two-dimensional vdW materials. For example,
orbital hybridisation and charge transfer at a vdW interface
may result in electric fields across the interface that give
rise to Rashba spin-orbit coupling. In magnetic vdW
heterostructures, this in turn can drive the
Dzyaloshinskii-Moriya interaction which leads to a canting
of local magnetic moments at the vdW interface and may thus
stabilise novel 2D magnetic phases. While such emergent
magnetic 'interphases' offer a promising platform for
spin-based electronics, direct spectroscopic evidence for
them is still lacking. Here, we report Zeeman effects with
Landé $g$-factors up to $\approx230$ at the interface of
graphene and the vdW ferromagnet Fe$_3$GeTe$_2$. They arise
from a magnetic interphase in which local-moment canting and
itinerant orbital moments generated by the non-trivial band
topology of Fe$_3$GeTe$_2$ conspire to cause a giant
asymmetric level splitting when a magnetic field is applied.
Exploiting the inelastic phonon gap of graphene, we can
directly access the buried vdW interface to the
Fe$_3$GeTe$_2$ by scanning tunnelling spectroscopy.
Systematically analyzing the Faraday-like screening of the
tip electric field by the graphene, we demonstrate the
tunability of the constitutional interface dipole, as well
as the Zeeman effect, by tip gating. Our findings are
supported by density functional theory and electrostatic
modelling.},
keywords = {Mesoscale and Nanoscale Physics (cond-mat.mes-hall) (Other)
/ FOS: Physical sciences (Other)},
cin = {PGI-3 / PGI-1 / PGI-6},
cid = {I:(DE-Juel1)PGI-3-20110106 / I:(DE-Juel1)PGI-1-20110106 /
I:(DE-Juel1)PGI-6-20110106},
pnm = {5213 - Quantum Nanoscience (POF4-521) / DFG project
G:(GEPRIS)443416235 - 1D topologische Supraleitung und
Majorana Zustände in van der Waals Heterostrukturen
charakterisiert durch Rastersondenmikroskopie (443416235) /
DFG project G:(GEPRIS)422707584 - SPP 2244: 2D Materialien
– die Physik von van der Waals [Hetero-]Strukturen (2DMP)
(422707584) / DFG project G:(GEPRIS)422213477 - TRR 288:
Elastisches Tuning und elastische Reaktion elektronischer
Quantenphasen der Materie (ELASTO-Q-MAT) (422213477) / EXC
2004: Matter and Light for Quantum Computing (ML4Q)
(390534769)},
pid = {G:(DE-HGF)POF4-5213 / G:(GEPRIS)443416235 /
G:(GEPRIS)422707584 / G:(GEPRIS)422213477 /
G:(BMBF)390534769},
typ = {PUB:(DE-HGF)25},
doi = {10.48550/ARXIV.2510.26662},
url = {https://juser.fz-juelich.de/record/1048374},
}