% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Wichmann:1048374,
      author       = {Wichmann, Tobias and Sastges, Mirco and Jin, Keda and
                      Martinez-Castro, Jose and Saunderson, Tom G. and Go,
                      Dongwook and Boban, Honey and Lounis, Samir and Plucinski,
                      Lukasz and Ternes, Markus and Mokrousov, Yuriy and Tautz, F.
                      Stefan and Lüpke, Felix},
      title        = {{G}iant orbital {Z}eeman effects in a magnetic topological
                      van der {W}aals interphase},
      publisher    = {arXiv},
      reportid     = {FZJ-2025-04589},
      year         = {2025},
      note         = {Bitte Postprint ergänzen},
      abstract     = {Van der Waals (vdW) heterostructures allow the engineering
                      of electronic and magnetic properties by the stacking
                      different two-dimensional vdW materials. For example,
                      orbital hybridisation and charge transfer at a vdW interface
                      may result in electric fields across the interface that give
                      rise to Rashba spin-orbit coupling. In magnetic vdW
                      heterostructures, this in turn can drive the
                      Dzyaloshinskii-Moriya interaction which leads to a canting
                      of local magnetic moments at the vdW interface and may thus
                      stabilise novel 2D magnetic phases. While such emergent
                      magnetic 'interphases' offer a promising platform for
                      spin-based electronics, direct spectroscopic evidence for
                      them is still lacking. Here, we report Zeeman effects with
                      Landé $g$-factors up to $\approx230$ at the interface of
                      graphene and the vdW ferromagnet Fe$_3$GeTe$_2$. They arise
                      from a magnetic interphase in which local-moment canting and
                      itinerant orbital moments generated by the non-trivial band
                      topology of Fe$_3$GeTe$_2$ conspire to cause a giant
                      asymmetric level splitting when a magnetic field is applied.
                      Exploiting the inelastic phonon gap of graphene, we can
                      directly access the buried vdW interface to the
                      Fe$_3$GeTe$_2$ by scanning tunnelling spectroscopy.
                      Systematically analyzing the Faraday-like screening of the
                      tip electric field by the graphene, we demonstrate the
                      tunability of the constitutional interface dipole, as well
                      as the Zeeman effect, by tip gating. Our findings are
                      supported by density functional theory and electrostatic
                      modelling.},
      keywords     = {Mesoscale and Nanoscale Physics (cond-mat.mes-hall) (Other)
                      / FOS: Physical sciences (Other)},
      cin          = {PGI-3 / PGI-1 / PGI-6},
      cid          = {I:(DE-Juel1)PGI-3-20110106 / I:(DE-Juel1)PGI-1-20110106 /
                      I:(DE-Juel1)PGI-6-20110106},
      pnm          = {5213 - Quantum Nanoscience (POF4-521) / DFG project
                      G:(GEPRIS)443416235 - 1D topologische Supraleitung und
                      Majorana Zustände in van der Waals Heterostrukturen
                      charakterisiert durch Rastersondenmikroskopie (443416235) /
                      DFG project G:(GEPRIS)422707584 - SPP 2244: 2D Materialien
                      – die Physik von van der Waals [Hetero-]Strukturen (2DMP)
                      (422707584) / DFG project G:(GEPRIS)422213477 - TRR 288:
                      Elastisches Tuning und elastische Reaktion elektronischer
                      Quantenphasen der Materie (ELASTO-Q-MAT) (422213477) / EXC
                      2004:  Matter and Light for Quantum Computing (ML4Q)
                      (390534769)},
      pid          = {G:(DE-HGF)POF4-5213 / G:(GEPRIS)443416235 /
                      G:(GEPRIS)422707584 / G:(GEPRIS)422213477 /
                      G:(BMBF)390534769},
      typ          = {PUB:(DE-HGF)25},
      doi          = {10.48550/ARXIV.2510.26662},
      url          = {https://juser.fz-juelich.de/record/1048374},
}